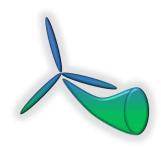


Ocean-REFuel (Ocean Renewable Energy Fuel)


"Next generation Renewable Ocean Energy"

9th Sept 2025 Stakeholder Update

Ocean REFuel Stakeholder Meeting - Agenda

- **09:30 10:00** Registration, refreshments
- 10:00 10:10 Ocean REFuel intro/welcome
- 10:10 10:30 Work Stream 1 Update (Offshore structures, logistics and power generation)
- 10:30 10:50 Work Stream 2 Update (Power to Carbon Free Fuel)
- 10:50 11:05 Q&A/Discussion/Feedback
- 11:05 11:25 Work Stream 3 Update (Carbon Free Fuel Transportation & Storage)
- 11:25 11:45 Comfort/Coffee break
- 11:45 12:05 Work Stream 4 Update (Ammonia, Carboniferous H2, System Optimisation)
- 12:05 12:25 Cross cutting themes (Economics, public perception & LCA)
- **12:25 13:00** Q&A/Discussion/Feedback
- 13:00 Close
- 13:00 14:00 Lunch

Ocean REFuel

Workstream 1 Offshore structures, logistics, and power generation

Nottingham, 09 September 2025 – Stakeholder event www.strath.ac.uk/engineering

Workstream 1: the team

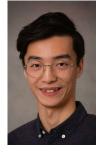
Prof Feargal Brennan, Pl

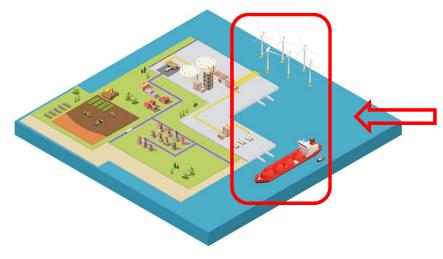
Prof Maurizio Collu, WS1 Lead

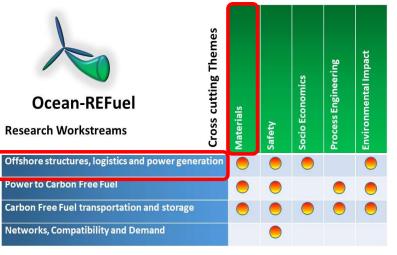
Dr Shen Li, Lecturer

Dr Claudio Rodriguez-Castillo, PDRA

Dr Abel Arredondo-Galeana, PDRA


John Harris, PhD res.


Miracle Mbaekwe, PhD res.



Xiaoming Ran PDRA

Dr Xintong Wang PDRA

Workstream 1 - WPs and tasks

WS1.1
Scenarios
definition

T1.1.1 Locations? Metocean conditions?

T1.1.2 Which ORE technologies?

T1.2.1 Support platform: objectives, constraints

T1.2.2 Support platform: MDAO analysis
T1.2.3 Impact of offshore conditions on H₂ production on H₂ production: opt

T1.2.3 Impact of offshore conditions on H₂ production

T1.2.4 Offshore platform for H₂ production: optimum configuration

WS1.3

Storage of H₂ in offshore conditions

T1.3.2 Impact of offshore conditions on H₂ storage system equipment

T1.3.3 Offshore platform for H₂ storage: optimum configuration

WS1.4

H₂

transportation

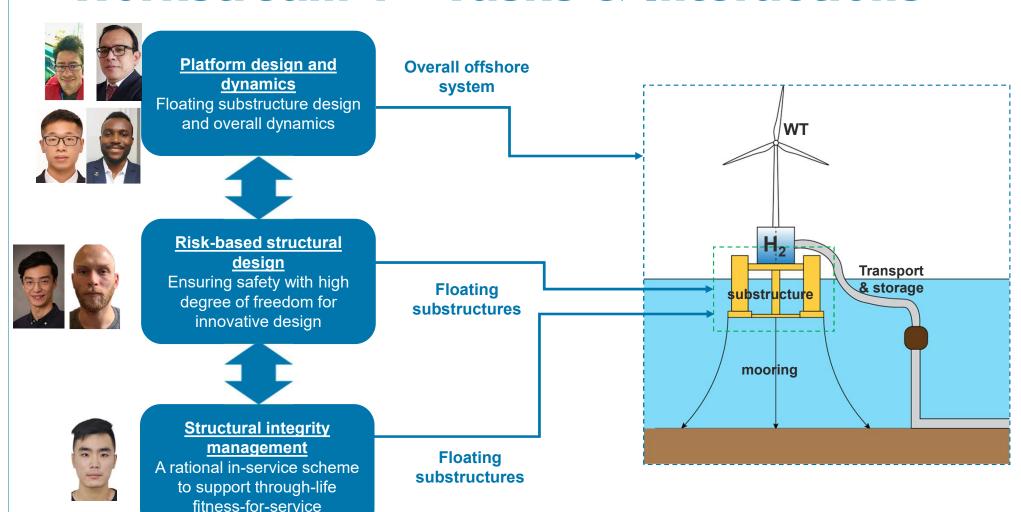
T1.4.2 Damage modelling and mitigation solutions

1 journal paper

- Rodríguez et al, 2023. A critical review of challenges and opportunities for the design and operation of offshore structures supporting renewable hydrogen production, storage, and transport. Wind Energy Science, 9-3, pp.1-34.

3 conference papers/seminars

- OMAE 2024, Singapore
- WESC 2023, Glasgow- UK;


Seminar SINDIC2023, Lima-Peru;

6 journal papers:

- Arredondo-Galeana, A., Scarlett, G. T., Collu, M., & Brennan, F. (2025). A hybrid wind-wave floating platform to ensure a minimum power base load. Preprint: https://doi.org/10.31224/4553 (Ocean Engineering Under review).
- Rodríguez et al, 2025. "Feasibility of a Centralised 200 MW Floating Hydrogen Production System on a Tri-Column Semisubmersible: Design and Dynamics". Renewable Energy (under review).
- Rodríguez et al, 2025. "Comparative Design Space Exploration of Centred and Off-centred Semisubmersible Configurations for Floating Offshore Wind Turbines". Ocean Engineering, 324,p.120740.
- Rodríguez et al, 2024. "Design considerations and preliminary hydrodynamic analysis of a decentralised floating wind-hydrogen production system". International Journal of Hydrogen Energy, 89, p. 496-506.
- Yeter et al, 2023. Macroeconomic impact on the risk management of offshore wind farms. Ocean Engineering, 284, p.115224.
- Li, S. and Brennan, F., 2024. Implementation of digital twin-enabled virtually monitored data in inspection planning. Applied Ocean Research, 144, p.103903.
- Li, S. and Brennan, F., 2024. Digital twin enabled structural integrity management: Critical review and framework development. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, p.14750902241227254.

to shore

Workstream 1 – Tasks & Interactions

Workstream 1 - Tasks & Interactions

<u>Platform design and</u> <u>dynamics (MDAO)</u>

RQ1: Loads & motions RQ2: Performance criteria

RQ3: Optimization

Extra power available

Platform requirements

Hybrid system

RQ1: Wave+wind

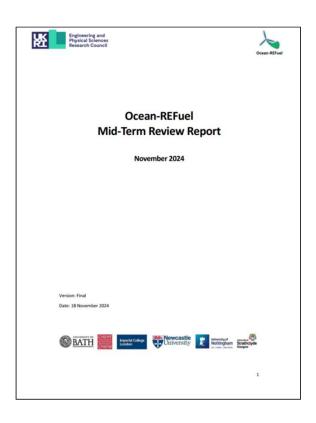
Risk-based Structural Design

RQ1: HSE
considerations?
RQ2:Damage
tolerant approach?
RQ3: Structural
detailing with
emerging materials?

Optimal inspection planning

Design assumptions (load, deterioration)

tonal chart

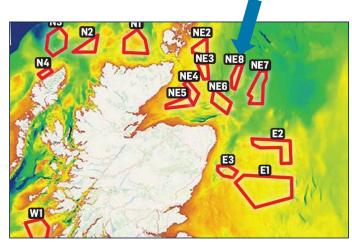

Structural Integrity
Management

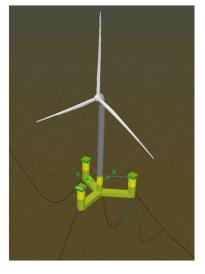
RQ1: Disparity
between design
assumptions and
actual operations?
Monitoring?
RQ2: Monitoring of

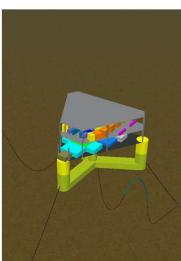
inaccessible details?
RQ3: Uncertainty of monitoring?

Workstream 1 – Focused Areas

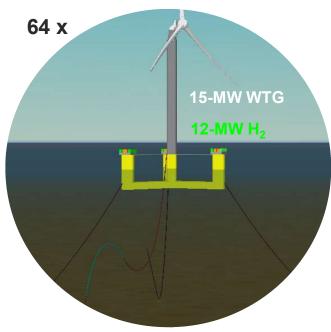
- Centralised Offshore production system floater design methodologies;
- Hydro-structural model integration potentially considering a novel energy flux approach allowing an unconstrained shape and optimising this through a seamless hydromechanics structural analysis;
- Hybrid materials & structures e.g. concrete, composites.
- Re-examine/revise the **design/control strategy** for optimised H2 production (turbines are currently designed for production of cheapest electricity not to optimise feed to H2 production).

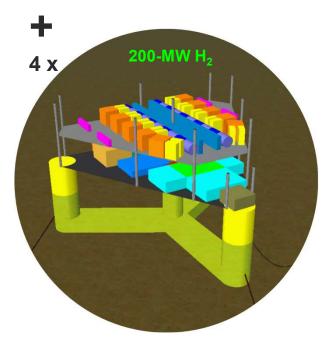

Recap of previous results


> WS 1.1:

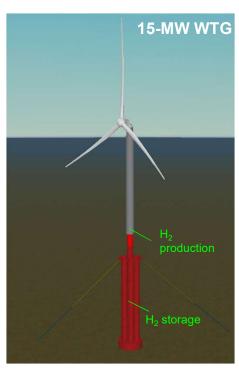

- T1.1.1: NE8 Scotwind site:
 - 960 MW (FOW), 330 km², depth: 75 110 m, ~75 km from coast
 - 20 years of hourly data (wind, wave, surface temp)
- T1.1.2: FOWT most promising for local H2 production (wind-wave system also investigated)

> WS 1.2 & 1.3:


- "Strawman" case scenario (explore design reqs. & premises):
 - Decentralised: 64 x 15-MW WTG (12-MW Electrolysis)
 - Centralised: 4 x 200-MW Electrolysis
- Substructure:
 - Open access WT data
 - EoS → Tri-column semisubmersible (UMaine VolturnUS);

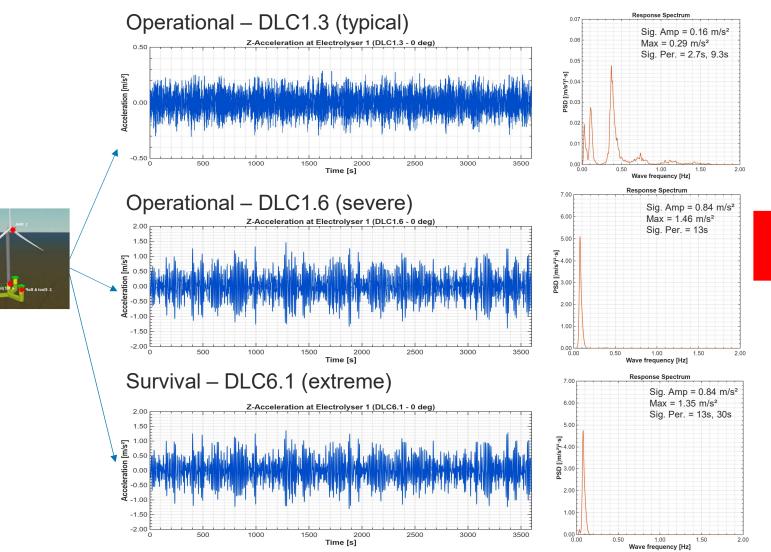


Offshore Hydrogen Production


Rodríguez, C.A. et al., 2024. "Design considerations and preliminary hydrodynamic analysis of a decentralised floating wind-hydrogen production system". Int'l Journal of Hydrogen Energy, 89.

64 (15-MW) FOWT

Rodríguez, C.A. et al., 2025. "Feasibility of a Centralised 200 MW Floating Hydrogen Production System on a Tri-Column Semisubmersible: Design and Dynamics". Int'l Journal of Hydrogen Energy (under review).

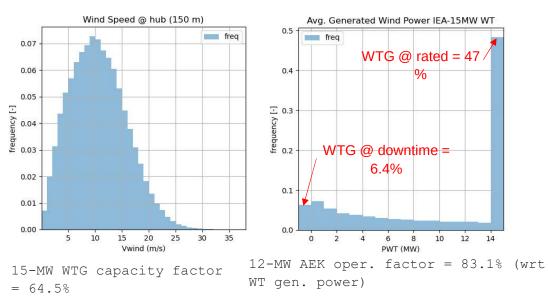

Offshore Hydrogen Production & Storage

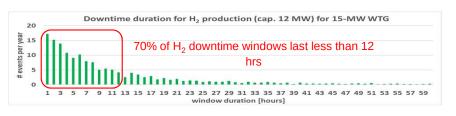
- Concept by 12toZero®
- Decentralised system
- Compressed H₂ storage
- Tackles resource variability
- Good motion behaviour
- Further research: design, sizing, layout, etc.
- Storage on multilevel-topside semisubmersibles?

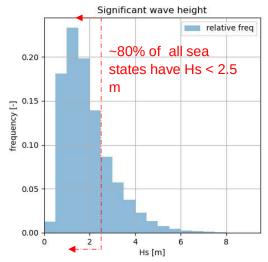
Rodríguez, C.A. et al., 2025. "Synergising Floating Wind and Hydrogen Production and Storage: Insights from the Hyfloat Concept". OMAE2025, Jun. 2025, Vancouver.

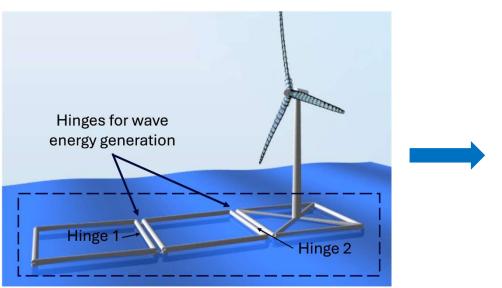
"Short-term" dynamics @ Offshore H₂ Facilities

Scale 1:38

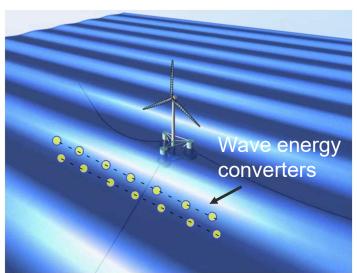



PS-6TL-350 Motion Platform (x 1)


"Long-term" WTG variability vs. H₂ cap.

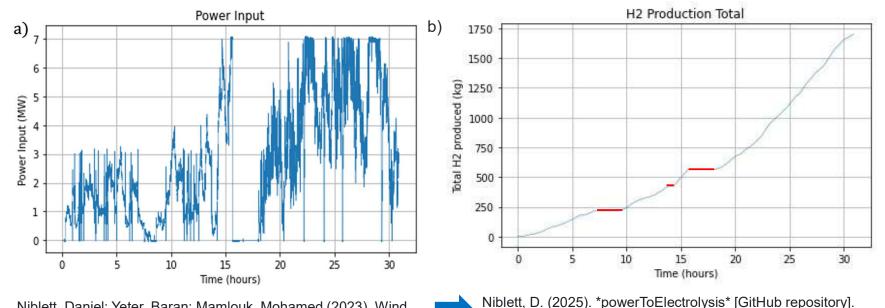


Potential complementarity (20% H_2 capacity):


- ■10 WECs (~250 kW),
- •02 tidal devices (~1.2 MW)
- •Other ORE devices?

From hybrid platform to co-located farm

Hybrid platform


Arredondo-Galeana, A., Scarlett, G. T., Collu, M., & Brennan, F. (2025). A hybrid wind-wave floating platform to ensure a minimum power base load. Preprint: https://doi.org/10.31224/4553

Co-located wind-wave farm

Arredondo-Galeana, A., et al. (2026). Exploiting wind and wave synergies for cost efficient offshore hydrogen production. (*In preparation*)

H2 production from wind only

Retrieved August 28, 2025, from

https://github.com/DNiblett/powerToElectrolysis

Niblett, Daniel; Yeter, Baran; Mamlouk, Mohamed (2023). Wind Speed & Power Generated Dataset For Floating Offshore 7 MW and 15 MW Turbine. Newcastle University.

Dataset. https://doi.org/10.25405/data.ncl.24516718.v1

With co-located wind wave farm

- 1) How can wave power prevent no production intervals of hydrogen production?
- 2) What are the cost implications of bringing wave power into the mix?
- 3) How are higher frequency fluctuations detrimental to hydrogen electrolysers?

Arredondo-Galeana, A., et al. (2026). Exploiting wind and wave synergies for cost efficient offshore hydrogen production. (In preparation)

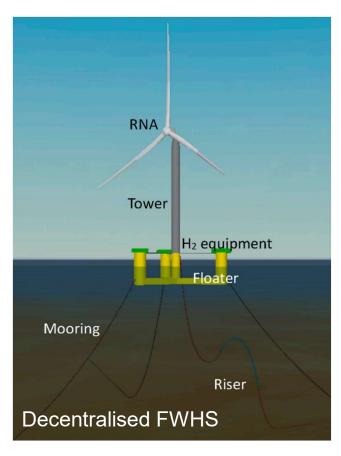
Integrating Novel Design, Strategic Lifespan, and Operational Frameworks to Minimise LCOH

•Smoothed power feed for electrolyser

Phased Retrofit Strategy

Designing new assets for future tech recapitalisation

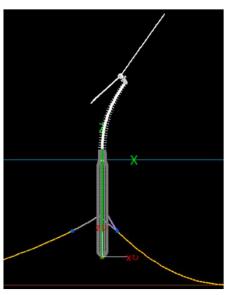
Beyond 'Bolt-On' Integration Low-Capex Turbine Specification


Shorter design life optimised for H₂

Unified Techno-Economic Framework

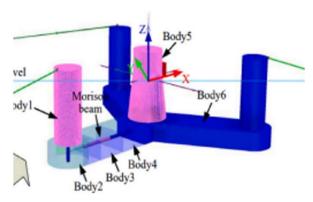
Co-optimising CAPEX, OPEX & real options value

Integrated analysis for H2 production system



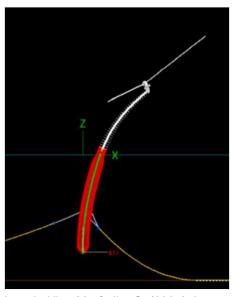
- Coupled dynamics
- Integrated analysis
- Basic design: aero-hydro-servo-elastic models
- Floating platform:

Rodríguez, C.A. et al., 2024. "Design considerations and preliminary hydrodynamic analysis of a decentralised floating wind-hydrogen production system". Int'l Journal of Hydrogen Energy, 89.


Hydro-structural modelling for integrated analysis

Lee, I., Kim, M., & Jin, C. (2025). Impact of hull flexibility on the global performance of a 15 MW concrete-spar floating offshore wind turbine. *Renewable Energy*, 197, 1081–1098.

Rigid


- Implementation is easy
- Computational efficient
- No platform structural analysis

Wang, S., & Moan, T. (2024). Analysis of extreme internal load effects in columns in a semi-submersible support structure for large floating wind turbines. *Ocean Engineering*, 291, 116372.

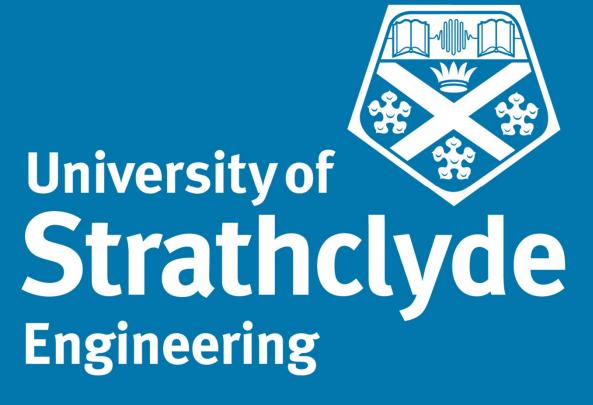
Multibody

- Implementation is medium
- Acceptable computation effort
- Platform structural analysis

Lee, I., Kim, M., & Jin, C. (2025). Impact of hull flexibility on the global performance of a 15 MW concrete-spar floating offshore wind turbine. *Renewable Energy*, 197, 1081–1098.

Flexible

- Implementation is hard
- Elastic analysis
- Platform structural analysis


Conclusions

- Accelerations and motion frequencies at electrolyser locations vary greatly between operational, severe, and extreme sea/wind conditions.
- Most hydrogen production downtimes are short and coincide with mild seas, suggesting that small-scale complementary generation or storage can effectively maintain system reliability.
- Wind and wave offshore renewable generation in swell dominated regions decreases wind power downtime.
- Co-location of wind and wave technologies is a feasible alternative. The monetary impact of co-location for hydrogen generation is one objective of our new study.
- Multi-fidelity structural modelling of the floating platform allows its application at various design and optimization stages.

Next steps

- Continue interacting: NU → validate design limits and hydrogen system integration
 UoN → LCA comparison: centralised vs. decentralised);
- Continue with CorPower and NU the study on co-location of wind and wave energy.
- Assess complementary offshore devices or storage to support hydrogen production during partial-load wind conditions, not just during turbine downtime;
- Establish an integrated engineering model for time-domain structural analysis for the FWHS under various loading conditions → review paper
- Continue collaborating with Imperial College to develop an optimised LCOH model, providing clearer insights into how offshore wind farm design and operational strategies influence the cost of green hydrogen.

Overview

- 1. Membrane-less electrolyser
- 2. AEM based Electrolysers
- 3. Rotating cells and MFIE
- 4. Electrolyzer in floating Offshore simulation
- 5. Questions and open discussion

Overview

- 1. Membraneless electrolyser & modelling
- 2. AEM based Electrolysers
- 3. Rotating cells and MFIE
- 4. Electrolyzer in floating Offshore simulation

Daniel Niblett

5. Questions and open discussion

Publication

May 2025 - Niblett, Daniel, Hosni Ahmed Elwan, and Mohamed Mamlouk. "Membraneless water electrolysis enabled by flow and porous electrode design for bubble separation." *Chemical Engineering Journal* 519 (2025): 163444. https://doi.org/10.1016/j.cej.2025.163444

Covering the insights established during numerical simulations and small electrolyser cell prototyping

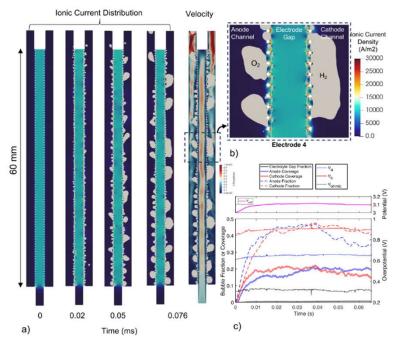
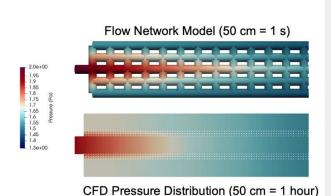


Fig. 8. Simulation of the experimental cell with electrode 4 (2.1 mm electrode gap), scaled to 6 cm operating at a fixed current density of 1 A cm⁻². (a) timeframes of the ionic current distribution, bubble fraction and velocity field. (b) close-up view of the electrode gap and current distribution affected by bubbles in outlet channels. (c) breakdown of the cell potential into electrode and ohmic overnotentials along with bubbles unflued critical fields.)

Re = 595, j = 3 A/cm2

Re = 595, j = 5 A/cm2

Membraneless Scaling



April 2025 - Small fund awarded to team: EPSRC North East Net Zero Accelerator Fund: Dr Niblett (PI), Prof Mamlouk (Co-I) Scaling of Membranless Electrolyser (£30k) - working on scale up of membraneless electrolyser technology.

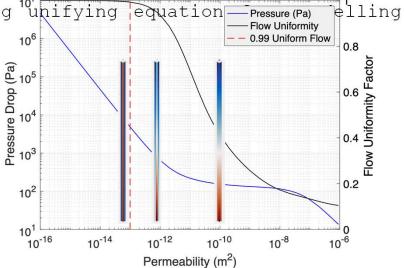
July 2025 - Patent Update: UK Patent Application No 2410504.1 Membrane free electrolysis PCT and top-up application

New limitations on electrode properties found by deriving unifying equation

results of flow distribution

Permeability = 9e-07m²

12


10

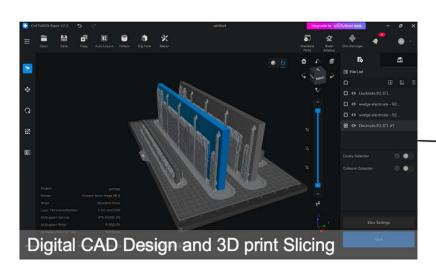
8 (ed)

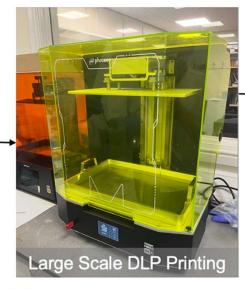
6 (ed)

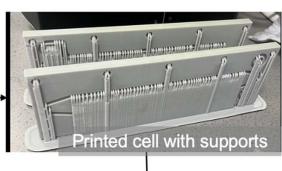
4

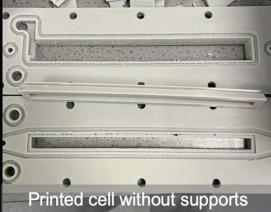
2

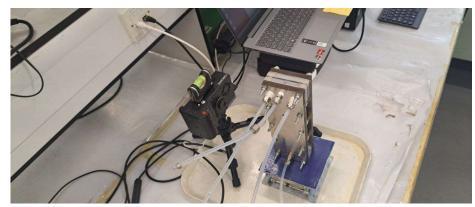
Cutom code for flow network established in MATLAB (x3600 faster than CFD) Electrolyser Height = **20 cm length**, Electrode Thickness = 1.5 mm Electrode Gap = 1 mm Inlet Re = 50 Viscosity = 0.002 Pa s Density = 1288 kg/m3

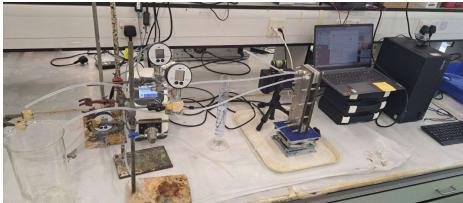

Target
Permeability:
10⁻¹³ – 10⁻¹² m²

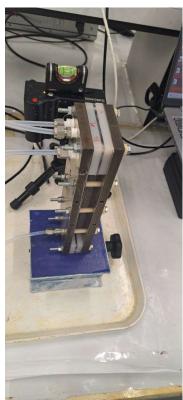

M Mamlouk, Newcastle University, 2025 26

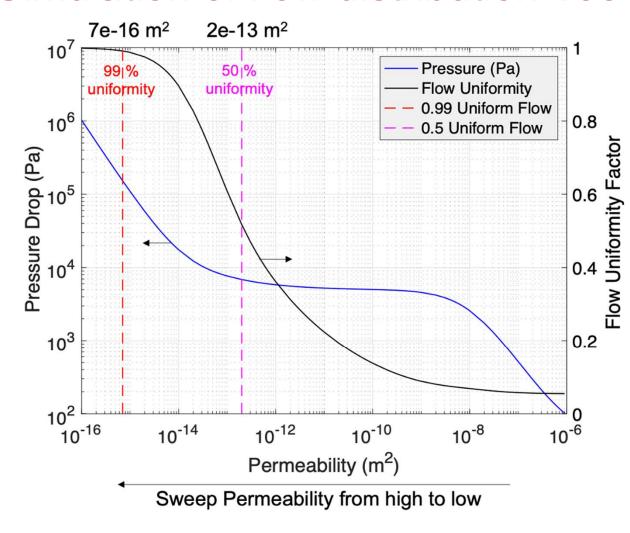

Membraneless Scaling Manufacturing Cell

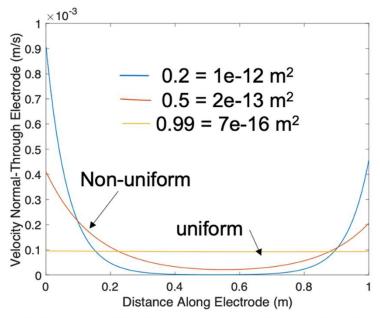



Newcastle University, 2025 27

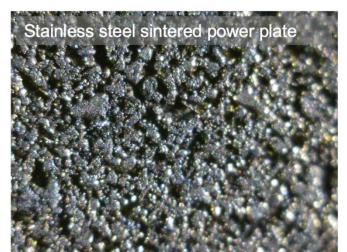

Membrane-less flow through electrolyzer

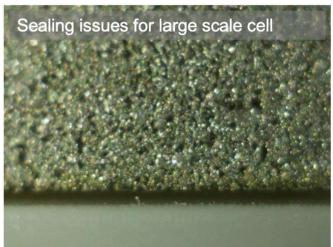


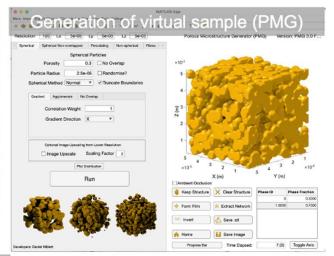




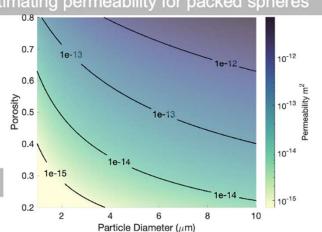
Simulation of flow distribution 100 cm




Flow distribution through electrode at different permeability values


Lower permeability electrode required for scale: Function of gap size, electrode thickness, Electrolyser height

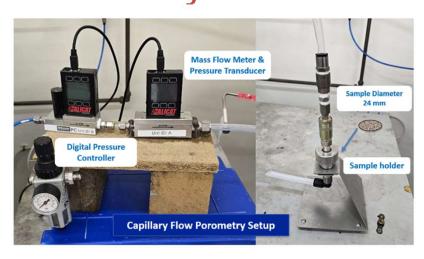
Electrode Material Characterisation



Estimating permeability for packed spheres

$$k = \frac{d_p^2 \epsilon^3}{180(1 - \epsilon)^2}$$

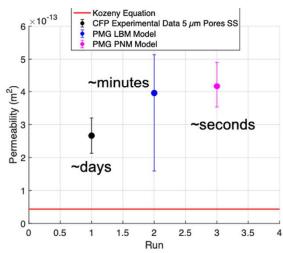
$$d_{pore} = \frac{d_p \epsilon}{1 - \epsilon}$$

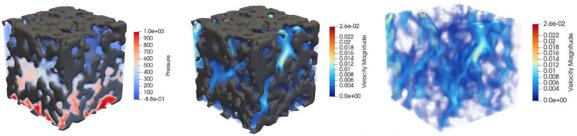


Specific surface area estimation from PMG 3.372x10⁵ m²/m³

Permeability and pore size method from manufacturer not specified so cannot be trusted

Permeability Measurements - CFP

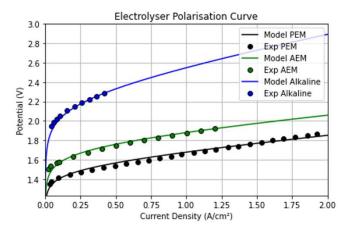



3 mm	n stainles	ss stee	el plate (3	30% p	orosity)			
Runs	Bubbl e Point Pressur e [Pa]	Max Pore Size [µm]	Min Pore Size Pressur e [Pa]	Min Pore Size [µm]	Mean Pore Pressure [Pa]	Mean Pore Size [µm]	Median Pore Size [µm]	Maximum Relative Permeability [m²]
Run 1	11440	6.59	44440	1.70	26820	2.81	3.47	3.27E-13
Run 2	13470	6.01	44440	1.82	27350	2.96	3.56	3.08E-13
Run 3	10600	7.64	39960	2.03	24410	3.32	3.85	2.95E-13

1.5 mm stainless steel plate (30% porosity)

Runs	Bubble Point Pressure [Pa]	Max Pore Size [µm]	Min Pore Size Pressure [Pa]	Min Pore Size [µm]	Mean Pore Pressure [Pa]	Mean Pore Size [µm]	Median Pore Size [µm]	Maximum Relative Permeability [m²]
Run 1	8700	9.31	22220	3.64	19470	4.16	5.23	2.27E-13
Run 2	8730	9.27	23900	3.39	20040	4.04	5.63	2.21E-13
Run 3	9660	8.38	22240	3.64	19380	4.18	5.27	2.20E-13

Permeability also predicted by 3 ways: LBM, pore network model and Kozeny Eqn:


Customised Lattice Boltzmann Simulation for flow/permeability built within our software tool (Porous Microstructure Generator) – 4 minutes

Power to Electrolyser Coupling

https://github.com/DNiblett/powerToElectrolysi

PowerToElectrolysis: Developed simple electrolyser model (python) for converting power to produced hydrogen with options of: stack number, stack size, minimum load and electrolyser type (PEM, AEM, Alkaline).

Solve non-linear predictive model for electrolyser for every power timestep

$$f = N_{stacks} N_{cells} A_{cell} \left(2b \ln \left(\frac{i}{i_{0a} r_f} \right) + \frac{i\delta}{k} \right) i - P_{turbine}$$

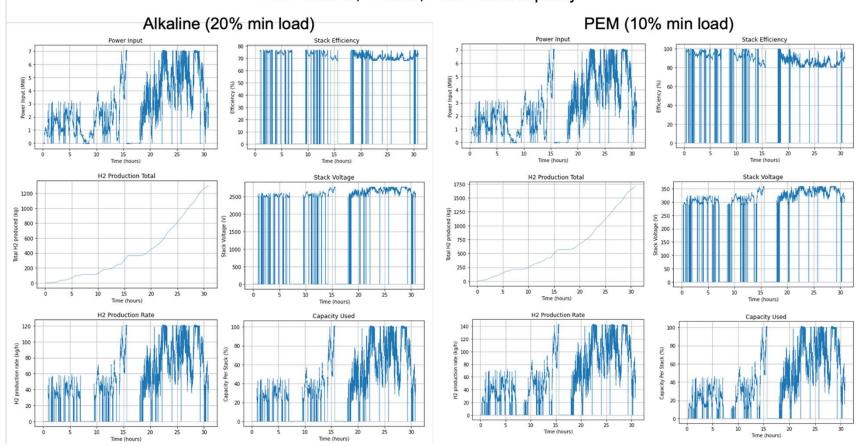
Predicted polarisation curves for each electrolyser in model

Hydrogen production rate from Faraday's law of electrolysis:

$$\frac{P_{stack}}{A_{cell}V(i)i} = N_{cells}$$

$$\dot{m} = rac{j A_{cell} N_{cell} M_{H_2}}{2 F}$$

Fixed rated stack power consumption, Fixed cell area, potential and current set to find number of cells.



https://github.com/DNiblett/powerToElectrolysi

S

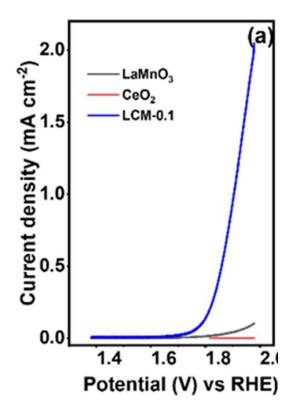
7MW Turbine, 1 Stack, 7 MW rated capacity

Overview

- 1. Membrane-less electrolyser
- 2. AEM based Electrolysers
- 3. Rotating cells and MFIE
- 4. Electrolyzer in floating Offshore simulation
- 5. Questions and open discussion

Ramakrishnar Shanmugam

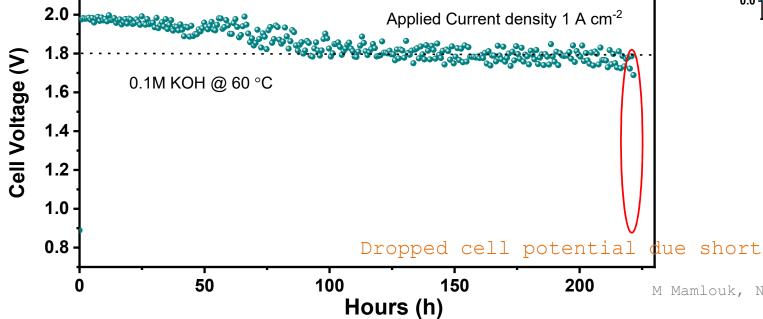
Publication

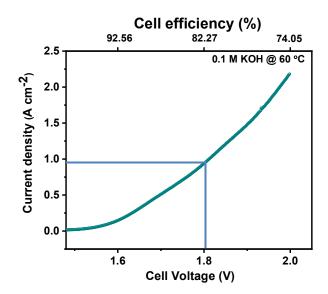


Title: Enhanced oxygen evolution reaction activity of Cerium oxide modified lanthanum manganese oxide perovskite catalyst in anion exchange membrane water electrolyser

Journal Name : Energy & Fuels (ACS)

Status: Revision Submitted (Manuscript Id ef-2025-03080b.R1)

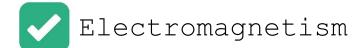

Finding: The optimised electrocatalyst of 10 wt% of CeO₂ added lanthanum manganese perovskite (LCM-0.1) showed improved OER activity, achieving a greater than 22-fold increase in generated current density at 1.9 V vs. RHE (reversible hydrogen electrode) in 0.1 M KOH compared to pure LaMnO₃

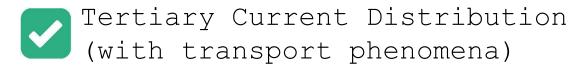


Stability test for AEM Electrolyser

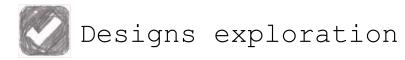
MOx-LDH @ NF // Pt-C at 0.1M KOH at 60 °C

Overview


- 1. Overarching questions of Workstream 2
- 2. Membrane-less electrolyser
- 3. AEM based Electrolysers
- 4. Rotating cells and MFIE
- 5. Electrolyzer in floating Offshore simulation
- 6. Questions and open discussion


Mostafa Delpisheh

Multi-physics modeling of the SDR \(\square\) OCEAN (SEFUEL)



- Magnetohydrodynamics
- Multibody systems

Two-phase flow

Multi-physics Coupling

Experimental validation



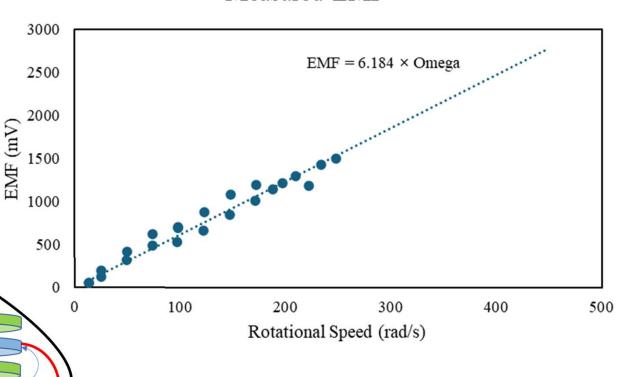
Objective: Validating the magnetic field from the simulation model with those from experiments using Gaussmeter

Objective: Calculating the energy losses from bearing, minor shaft misalignment, pulley, etc.

Voltage measurement in SDR

Rotating conducting disc

The voltage is measured between the rim of the disk and the shaft, under the exposure to two magnets, as displayed in the schematic below.

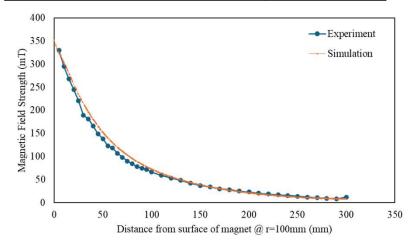

Theoretically, it can be

calculated as:

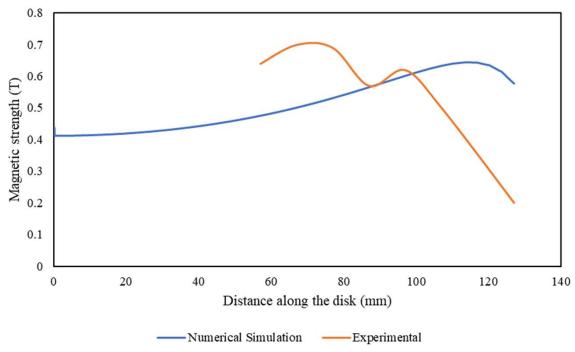
$$EMF = -B \times \frac{dA}{dt} = -\frac{1}{2}B\omega r^2$$

Where r is disc radius, with a rotational speed of ω , within a magnetic field of strength B. Using the formula and the measure EMF and relevant trend line, the effective magnetic field is calculated at 766.82 mT.

Measured EMF


M Mamlouk, Newcastle University, 2025 39

Magnetic field strength



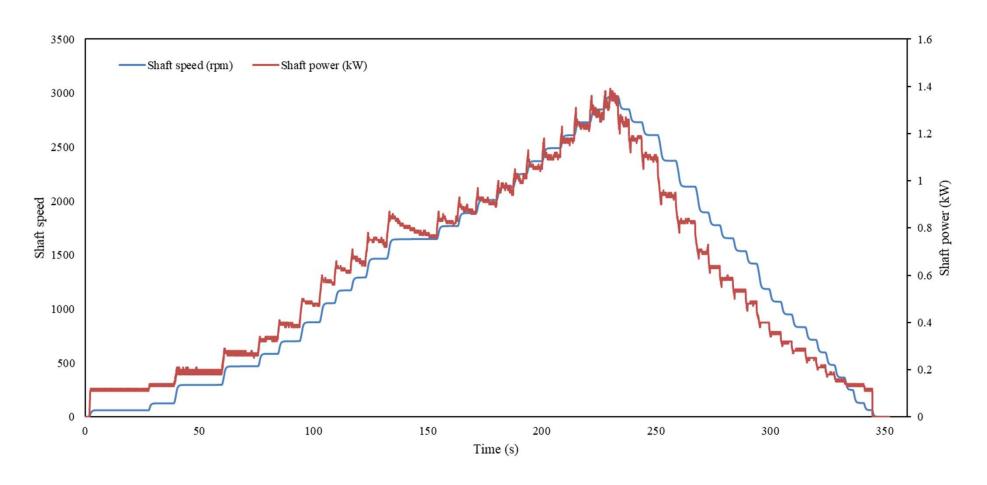
The magnetic field strength in the space between is measured using Gaussmeter and compared to numerical simulation in COMSOL.

Average	values	(mT)	from 60	mm	
	onw	ards			
Numeric	al Simul	lation	570		
(COMSOL)		370		
Experimental			560		
(Ga	ussmete	r)	360		

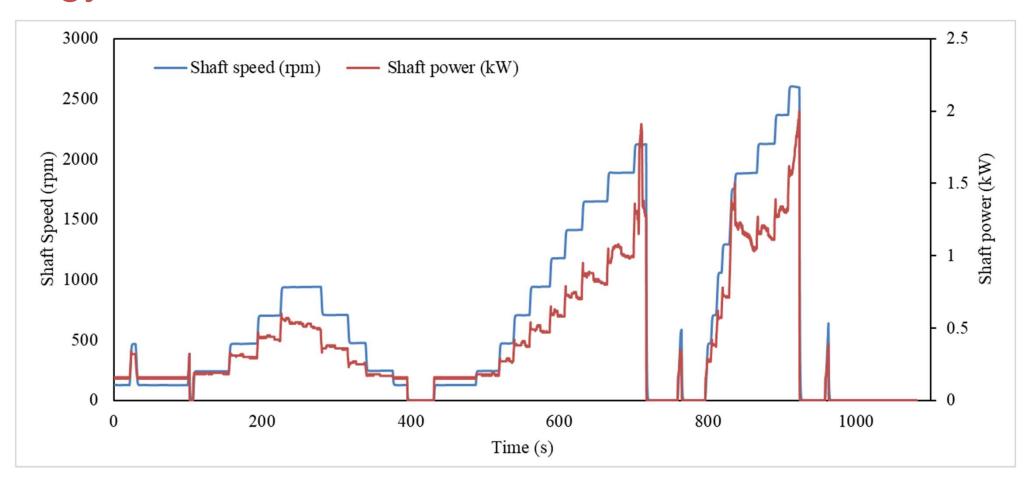
Magnetic field strength

Two-phase flow physics of SDR \searrow Ocean Newcastle University M Mamlouk, Newcastle University, 2025 41

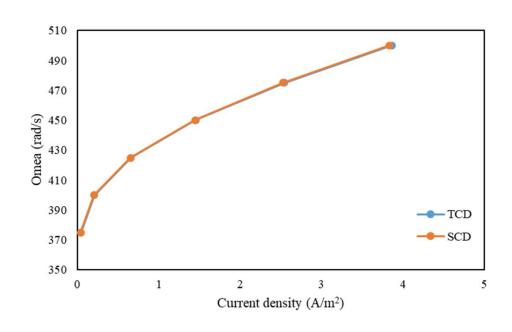
Magnetic field strength

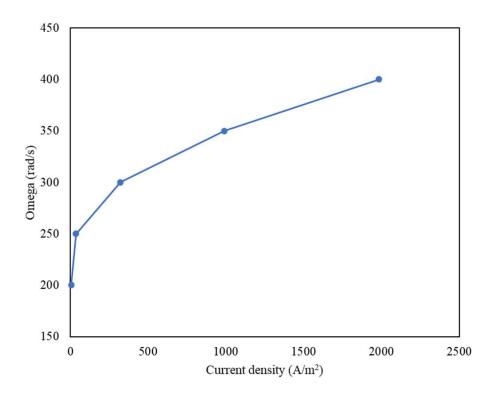


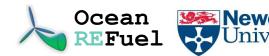
- •407 rpm of shaft
- •134 SLPM purge air
- •33 LPM $(2 \text{ m}^3/\text{h})$ water circulation


Energy losses in SDR – Without disk

Energy losses in SDR – With disk




Current electrolzyer performance and projected design



Present system

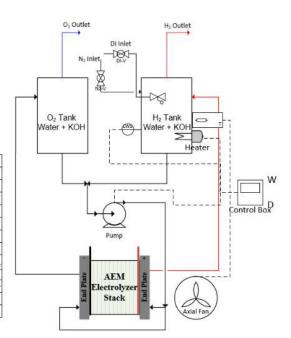
Projected future Design

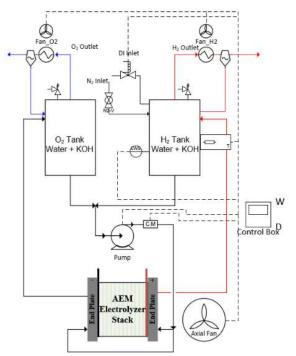
Overview

- 1. Overarching questions of Workstream 2
- 2. Membrane-less electrolyser
- 3. AEM based Electrolysers
- 4. Rotating cells and MFIE
- 5. Electrolyzer in floating Offshore Majid Rahgoshay simulation
- 6. Questions and open discussion

AWE Electrolyser Modification

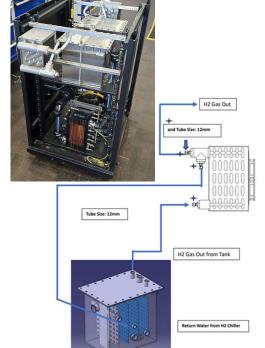
Modify AWE electrolyser system to test condition:


- •Add chiller line for better gas-liquid separation (by S.H2 & NCL)
- •Shortened electrolyser system to fit test bay size (by NCL)
- •Reinforced mechanical connections to withstand motion platform movements (by NCL)
- •Changed water feeding feedback from flowmeter to conductivity meter (by S.H2)
- •Omitted water heater and reduced electrolyte tank volume (by S.H2)
- •Added baffle inside electrolyte tank to reduce bubbling and splashing (by S.H2 & NCL)

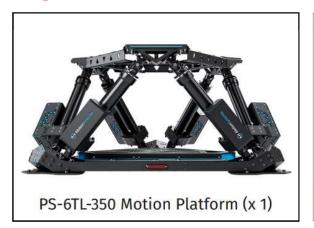

SungreenH2 Electrolyzer

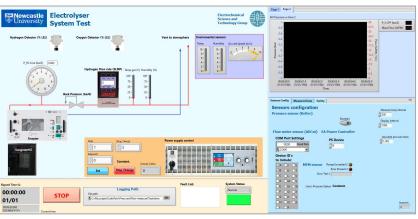
Globe Valve	Ball Valve
Check Valve	Relief Vavle
Float Valve	Solenoid Vavle
Pump 🔮	Flow Meter OO
Gas Filter →	− Water Filter → →
Separator 😝	Low water Switch
Flow Meter —	Conductivity Meter C.M
Deionized Water	Heat Exchanger
Dryer →	─ Temp Sensor < < < >
Mass Specs M :	
N2	кон
02	H2
Wiring	

Before

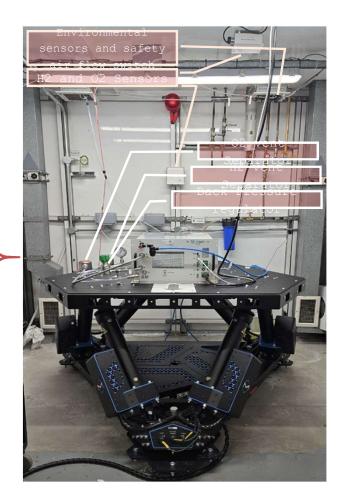


After Modification

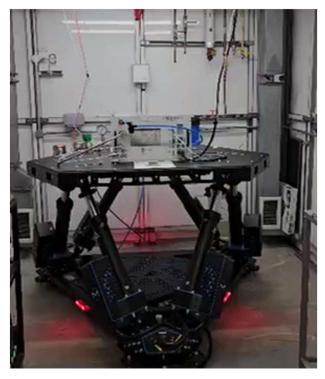


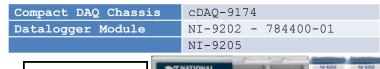

Preparing test bay

Preparing test bay for testing both electrolyser system



M Mamlouk, Newcastle University, 2025 48


Preparing test bay


Upcoming work for preparing test bay for testing both electrolyser system

- ✓ Testing Motion Platform:
 - Changing Yaw, Pitch and Roll degree.
 - Changing Heave, Sway and Surge displacement.
- ✓ Applying motion profile to platform with

computer

- Preparing LabVIEW code for control and monitoring sensors in test bay with new NI datalogger
 - UI Design of Test bay for WE testing
 - Cell Voltage monitoring of electrolyzer Stack

- Appling power profile
 - √ Using EA software (Done)
 - Integrating applying current profile with LabView (InProgress)

M Mamlouk, Newcastle University, 2025 49

Electrolyser Testing

Defining test protocols.

- ☐ AEM 35 barg H2
- ☐ AWE near ambient pressure

1. Static Baseline Performance Characterization

Variable Load Simulation (Wind Fluctuations)

Mechanical Motion (Rocking & Pitching) Simulation

Long-Term Durability & Lifetime Testing (on normal and stressors situation)

Applying Motion profile

DLC1 6 Odeg v2 (extreme

condition)

Real Word Requirements Testing Evaluation Condition & Test Plan Results All steps for applying motion profile from real world to Electrolyser system was done! Applying Strathclyde Normalized Find Best Make C++ Evaluate Simulation equivalent code to wave on the range limitation motion Data ForceSeatPM curve platform MathWorks
 Mathwor MathWorks* DIRT UNSTEAL MATLAB DLC1 3 Odeg v2 (mild environment) DLC1 6 Odeg v2 (harsh environment) M Mamlouk, Newcastle University, 2025 51

Applying Motion profile

Evaluating Profile Range under mild

environment

DLC1_3	Min-displac(m - Deg)	Max-displac(m - Deg)	Min Vel(m/s - Deg/s)	Max Vel(m/s - Deg/s)	Min Acc(m/s2 - Deg/s2)	Max Acc(m/s2 - Deg/s2)
X	-55.162	-28.563	-0.50628	0.63873	-0.26925	0.27306
Y	-2.4131	14.614	-0.58348	0.57115	-0.1115	0.147
Z	19.99	27.702	-0.42409	0.62584	-0.27702	0.26527
roll_deg	-0.3075	1.1134	-0.14249	0.1668	-0.12809	0.12363
pitch deg	-0.99071	6.8704	-0.40857	0.63828	-0.27754	0.25801
yaw_deg	-5.2601	5.4015	-0.40425	0.35444	-0.08448	0.080508

SYSTEM PERFORMANCE

		EXCURSION SINGLE DOF	VELOCITY	ACCELERATION
SURGE	CO CO CO	-0.3, 0.272 m -11.81, 10.62 in	0.68 m/s 33.86 in/s	6.4 m/s ²
SWAY		-0.26, 0.26 m -10.23, 10.23 in	0.7 m/s 27.56 in/s	5 m/s ²
HEAVE		-0.168, 0.187 m - 6.14, 7.36 in	0.37 m/s J 14.57 in/s	5 m/s ²
ROLL	PS-6TL-350 Motion Platform (x 1)	-20.6°, 20.6°	45°/s	600°/s²
PITCH	HEAVE	-19.9°, 18.1°	50°/s	650°/s²
YAW	ROLL YAW	-27.8°, 27.8°	60°/s	700°/s²

Factor_Relax = 0.9; For Motion Platform range

(6.40 m/	s2)	For Motion Platform range			
•	Min centralized	Max centralized	Min Course	Max Course	
$(5.00 \text{ m})^{-1}$	· · · · · · · · · · · · · · · · · · ·			_	
(6 x	-5.6472	7.1822	-0.27	0.243	
(O X	-7.992	9.0355	-0.234	0.234	
(6'Z	-2.1149	1.8496	-0.1503	0.1683	
roll_deg	-0.3075	1.1134	-18.54	18.54	
pitch_deg	2.0761	6.1213	-17.91	16.29	
yaw_deg	-5.2601	5.4015	-25.02	25.02	

Normalised Factor (length scale): Min For Y: 0.0259 (38.6), For Z: 0.071 (14) - 0.09 (11) M Mamlouk, Newcastle University, 2025 52

Applying Motion profile

Normalized with Froud scaling Find Best equivalent

Froude Scaling (gravity-dominant) is suitable for normalizing real-world profiles to lab scale, particularly because wave motion is significant, especially concerning the separators.

$$\lambda_{\rm L} = L_{\rm model} / L_{\rm real}$$
 , $\lambda_{\rm T} = \sqrt{(\lambda_{\rm L})}$

- \square Length scale (λ_{τ}) : ratio of model length to real-world length.
- \square Time scale (λ_{π}) :

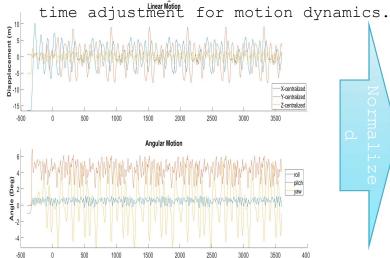
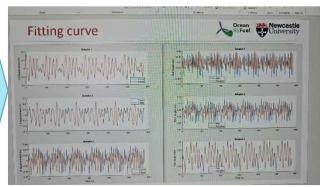
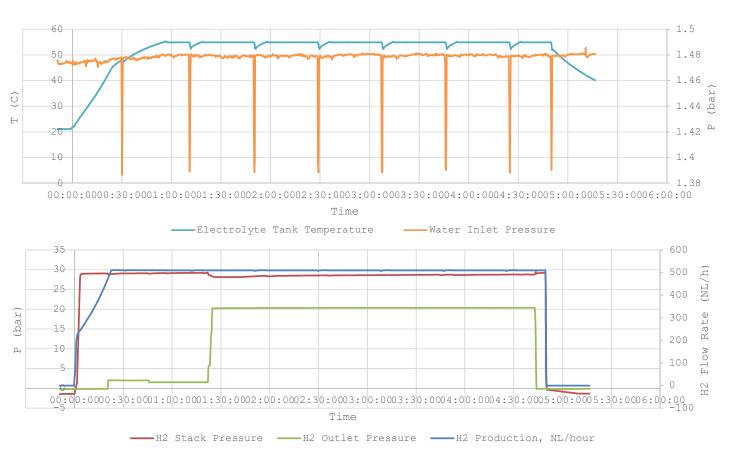



Table C2 presents the scaling factor for the model to the prototype of important parameters at a scale of 1:λ.

Magnitude	Unit - SI	Dimension	Ratio
Length	m	L	λ
Time	S	T	$\sqrt{\lambda}$
Velocity	ms -1	LT ⁻¹	$\sqrt{\lambda}$
Aceleration	ms -2	LT ⁻²	λ^0
Angular velocity	rad.s -1	T ⁻¹	λ-1/2
Angular acceleration	rad.s -2	T-2	1/λ
Angle	rad	1	λ^0
Mass	kg	M	$(\rho_{wp}/\rho_{wm})\lambda^3$
Force	N	MLT ⁻²	$(\rho_{wv}/\rho_{wm})\lambda^3$
Pressure	Pa	ML -1 T-2	$(\rho_{wp}/\rho_{wm})\lambda$
Moment	Nm	ML^2T^{-2}	$(\rho_{wp}/\rho_{wm})\lambda^4$
Power	W	MTL ³	$(\rho_{wp}/\rho_{wm})\lambda^{7/2}$
Frequency	S -1	T-1	λ-1/2
Mass moment of inertia (J)	Kg. m ²	ML ²	$(\rho_{wp}/\rho_{wm})\lambda^5$

Electrolyser testing

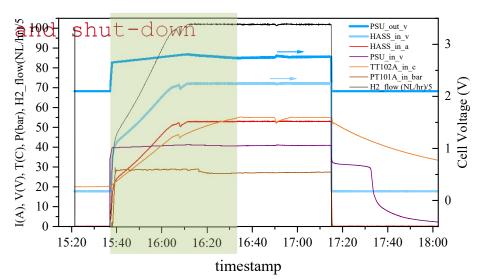


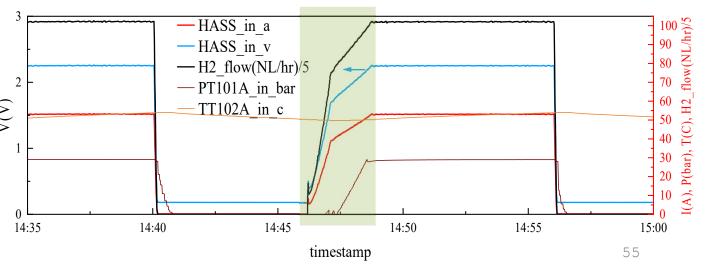
Enapter AEM Electrolyser testing start-up and shut-down

Enapter AEM Electrolyzer System
Some useful notes from
electrolyser's company(cold
start):

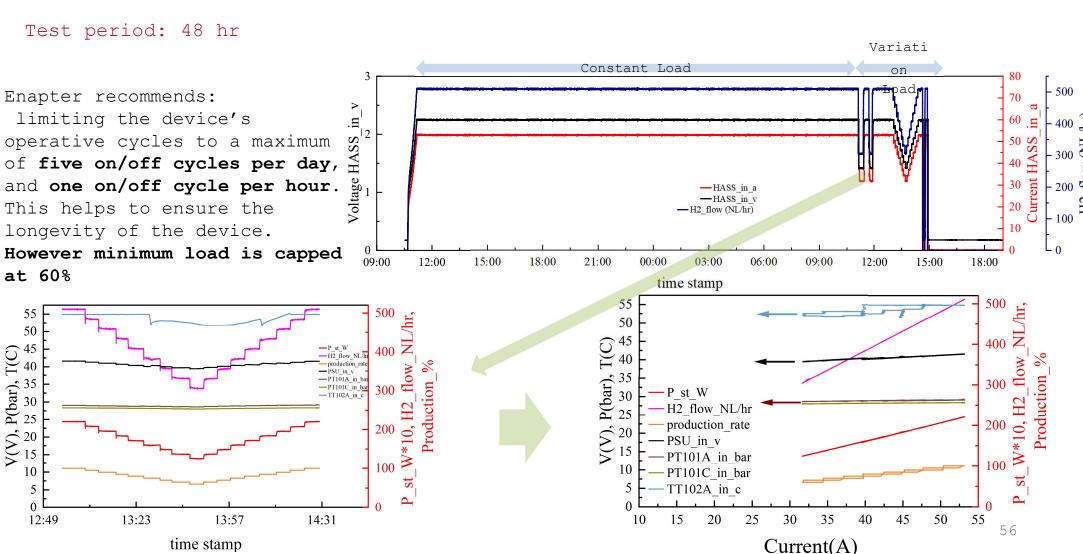
- Warm-up time (time taken for the electrolyte to heat up to 55 °C1 °C/min.
- Ramp up time (time to reach nominal production rate): 22 min.
- Build pressure time: 4 min.

Electrolyser testing

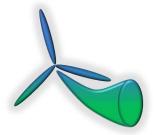



Enapter AEM Electrolyser testing start-up

Enapter AEM Electrolyzer System
Start-up after shut-down
(warm start):


- Warm-up time (time taken for the electrolyte to heat up to 55 °C): No need.
- Ramp up time (time to reach nominal production rate): less than 3 min.
- Build pressure time: Immediately. Less than 1min

Electrolyser testing on stable condition


THANKS FOR YOUR ATTENTION

Questions and discussion

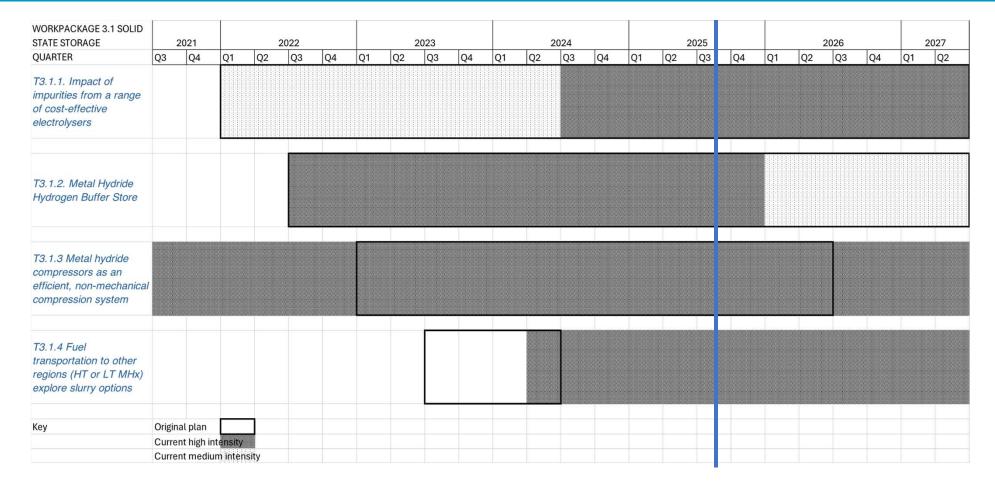
Ocean Refuel funded by EP/W005204/1

Questions and discussion

Ocean Refuel funded by EP/W005204/1

Work Stream 3 Update

Marcus Adams, Amelia-Rose Edgley, Ramas Al Qudah, Jorge Montero Banuelos, David Grant



Workstream 3.1 tasks

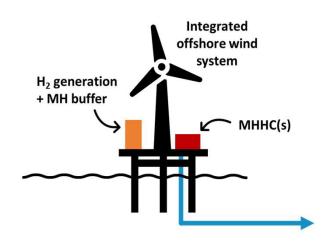
WP 3.1.1 Impurity cycling tests

- Impurity testing rig now completed. Commissioning underway.
- Planned cycling up to 200 ppm moisture levels consistent with undried gas stream (source Oort Energy)

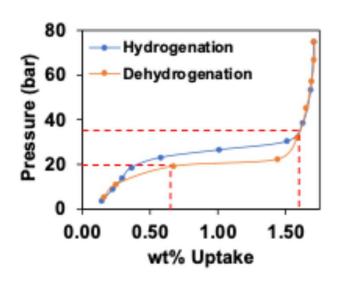
Investigate the resistance to impurities in different forms

- Powder
- Pellatised

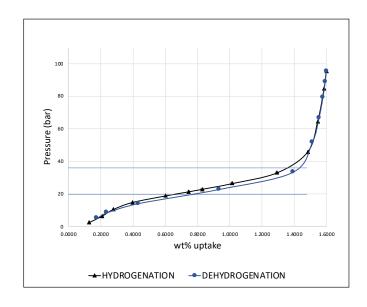
Semi automatised pellatiser installed



WP 3.1.2 Hybrid Buffer store


- 250 kg hydrogen store
- Tank volume from 194 m³ to 38 m³
- 14 tonne of hydride material

Feasibility Assessment Into the Use of Hybrid Gas-Hydride Tanks for Improving the Flexibility of Offshore Hydrogen Production Amelia-Rose Edgley, Timothy Cooper, Marcus J Adams, David M. Grant Accepted 6th Sept 2025 IJHE



3.1.2 MATERIALS SELECTION

Flat plateau and/or minimal hysteresis to maximise usable stored hydrogen

PCI for Hydralloy-C5 at 50 °C

UoN alloy (Ti,Zr)CrMnFeX at 25 °C

Fast reaction kinetics based on AB2 alloys to match system response

3.1.3 Metal hydride compression

Metal hydride compressor built and tested. Next steps improve the kinetics via a new design and exploring higher pressures and new materials under test

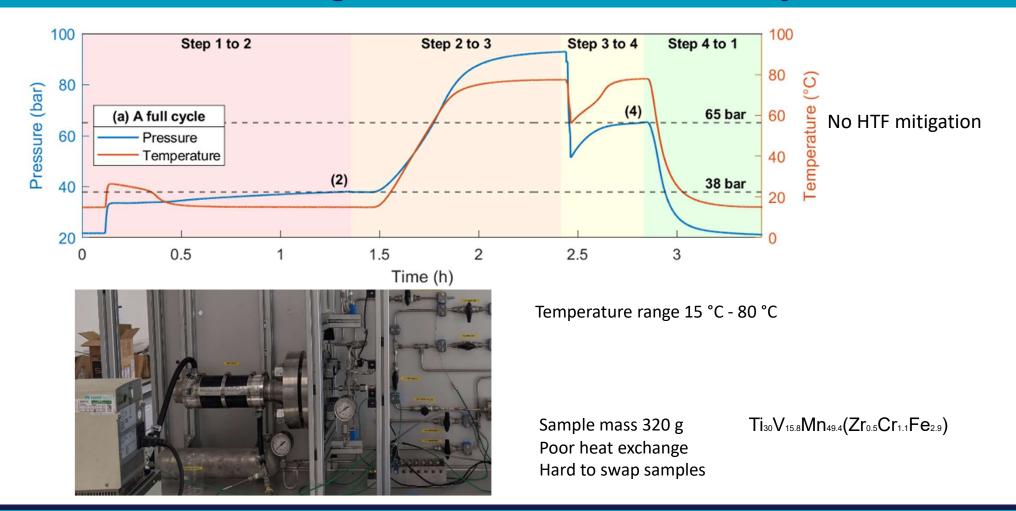
Suitability of metal hydride compression in offshore hydrogen generation for use in pipeline transmission

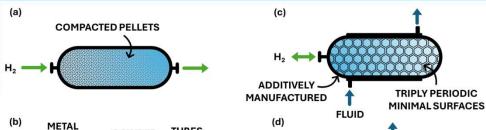
Authors: Marcus J. Adams¹, Jorge M. Banuelos¹, Andrew Gray¹, Ramas Al Qudah¹, Alastair Stuart¹, Martin Dornheim¹, David M. Grant¹

¹Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom

Keywords: Metal hydride hydrogen compression, hydrogen pipeline transmission, electrolyser waste heat, offshore hydrogen generation

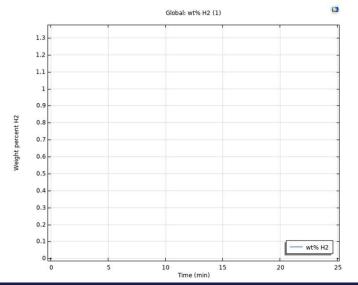
Submitted


Result of paper: it is possible to pressurise hydrogen from electrolyser outlet pressures (30 bar) to pipeline transmission pressures (80 bar) operating the metal hydride compressor between North sea seawater temperatures (5 to 15 °C) to electrolyser waste heat temperatures (max 80 °C)

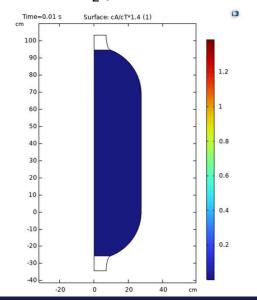


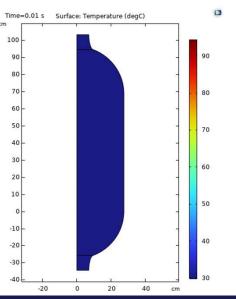
Integrated MH single stage compressor: Using sea water 15°C and electrolyser 80°C





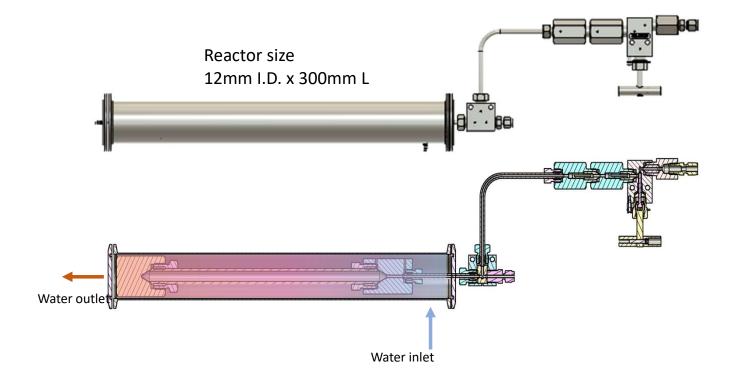
Alternatives:


wt% H₂ profile


Circulating hydrogen: simulation

wt% H₂ profile

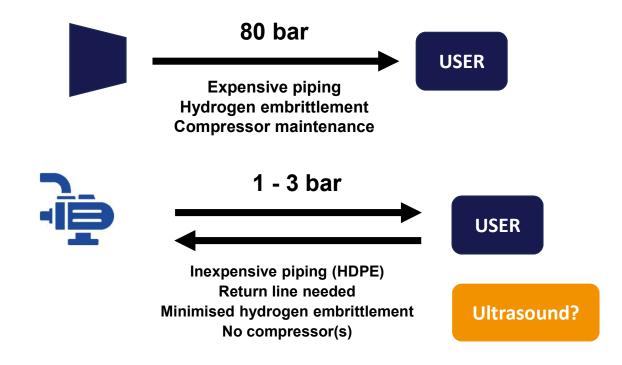
Temperature profile



NEXT GENERATION REACTOR

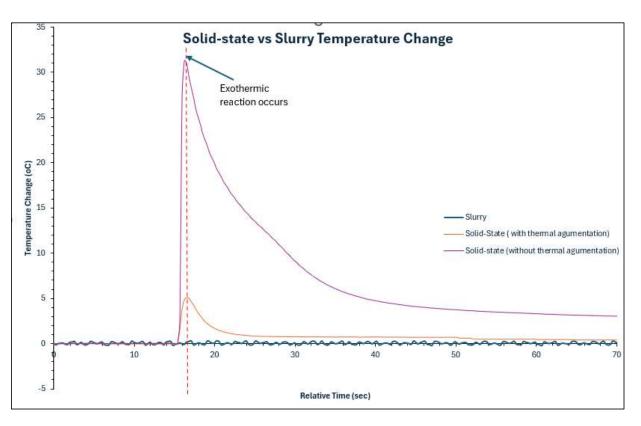
Pressure rating 1400 bar Temperature range -30°C – 150 °C

Sample mass 50-80 g Improved thermal efficiency Swapping samples inertly Powder and pellet form Multi-stage configuration Increased pressure rating

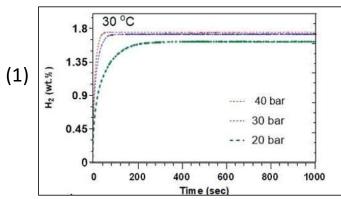


3.1.4 Pipeline transmission

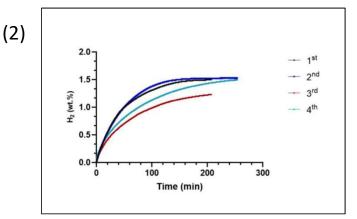
• 3.1.4 Alternative - transport hydrogen efficiently using a metal hydride slurry. Investigating ultrasound hydrogenation and dehydrogenation of the hydrides in fluids. Potential novel hydrogen transport system.



Preliminary technoeconomic analysis done

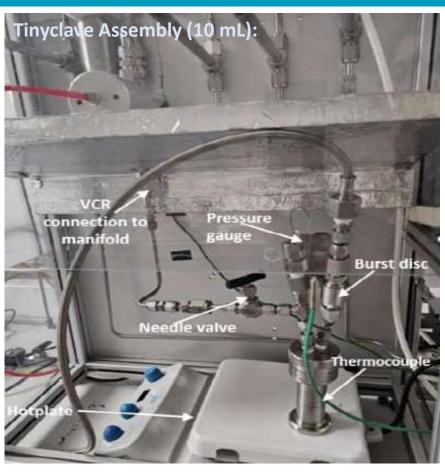


Challenge is the kinetics of slurries...

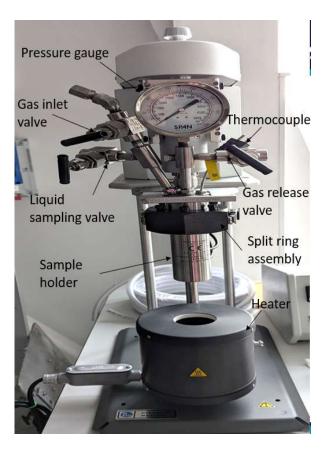


Advantage of slurries: heat management

HydralloyC5 in powder



HydralloyC5 in slurry - slower kinetics



Experimental setup modifications

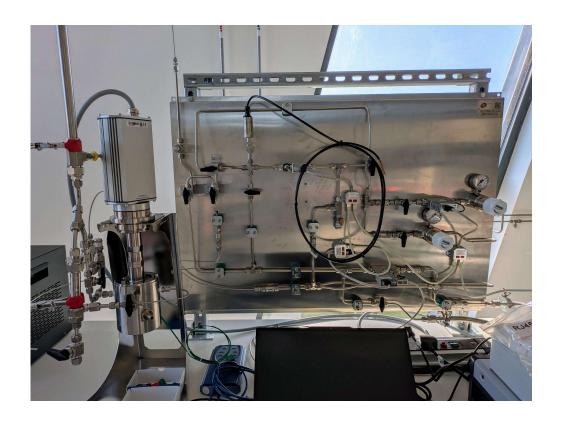
Parr reactor Assembly (100 mL):

...unlock superior hydrides

Current room temperature hydrides are:

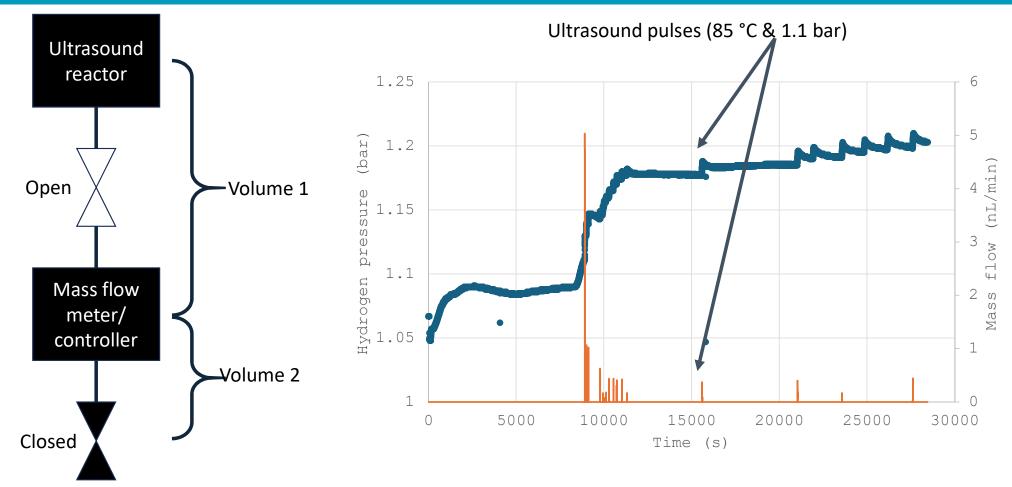
- Expensive, heavy
- Low H₂ weight percent (1.5 wt%) H_2

If we can unlock higher H₂ weight percent materials


- More H₂ transported in pipeline
- Unlock low pressure H₂ storage

- For example,
- $3NaAlH_4 \rightleftharpoons Na_3AlH_6 + 2Al + 3H_2$ $(3.7 \text{ wt}\% \text{ H}_2)$
- Needs 150 °C and 100 bar
- Thermodynamics says can be done at near room temperature at $1 - 3 \, \text{bar.}$

Ultrasound rig



POC Preliminary results

Available online at www.keaipublishing.com/en/journals/journal-of-magnesium-and-alloys/

ScienceDirect

www.elsevier.com/locate/jma

Full Length Article

Improving kinetic modelling of magnesium hydrogenation by including interfacial polarisation and interstitial hydrogen clustering behaviour within the site availability model

Marcus J. Adams a,*, Alastair Stuart Gavin S. Walker, David M. Grant David M. Grant

^aAdvanced Materials Research, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

^bAria Sustainability Ltd, Unit 7 Wheatcroft Business Park Landmere Lane, Nottingham, NG12 4DG, United Kingdom

Received 17 October 2024; received in revised form 4 January 2025; accepted 10 March 2025 Available online 4 April 2025

Comfort Break

WP4 -Ammonia, Carboniferous H2, Overall System Optimisation H2 may be transported in its pure form, transformed into a different energy carrier and/or blended to form part of a gas stream to be transported. Ammonia can support the concept, whilst methane produced from capture CO2 and H2 could mitigate the impact of excessive carbon dioxide emissions.

This WP addresses.

WP4.1. Use of NH3 as an alternative long-term/long-distance energy vector

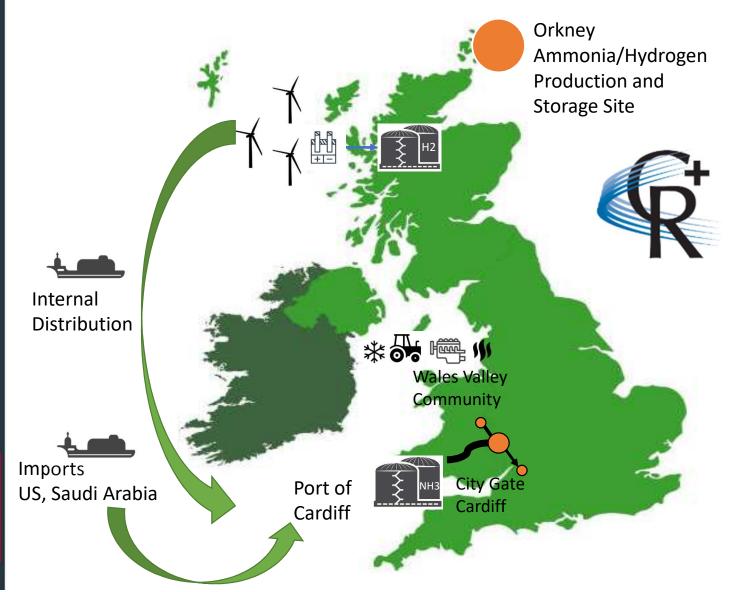
WP4.2. 'Carboniferous' Hydrogen Supply

WP4.5. Overall System Optimisation

Canolfan Rhagoriaeth ar Dechnolegau Amonia Centre of Excellence on Ammonia Technologies

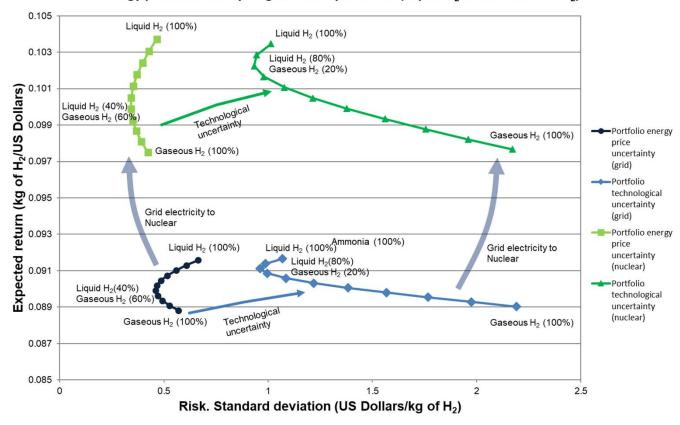
School of Engineering Ysgol Peirianneg

Professor Agustin Valera-Medina Valeramedinaa I@cardiff.ac.uk



Dr Marco Jano Ito JanoItoM@cardiff.ac.uk

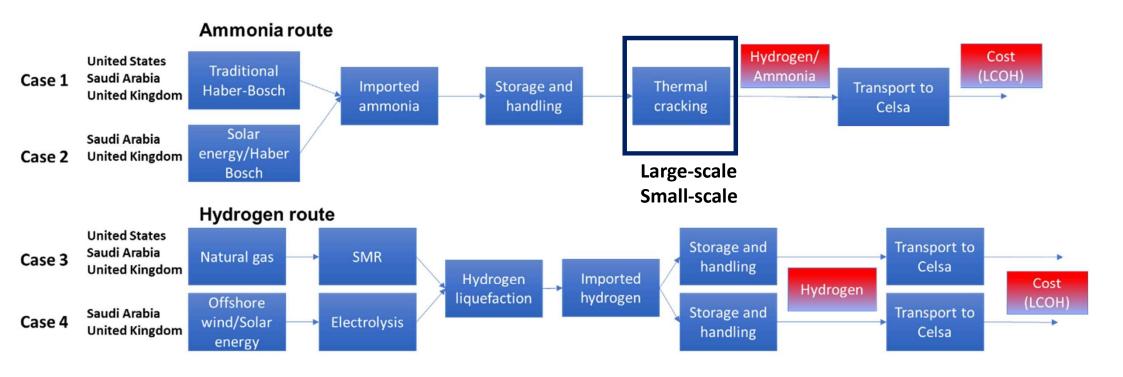
UK SCENARIO FOR AMMONIA UTILIZATION



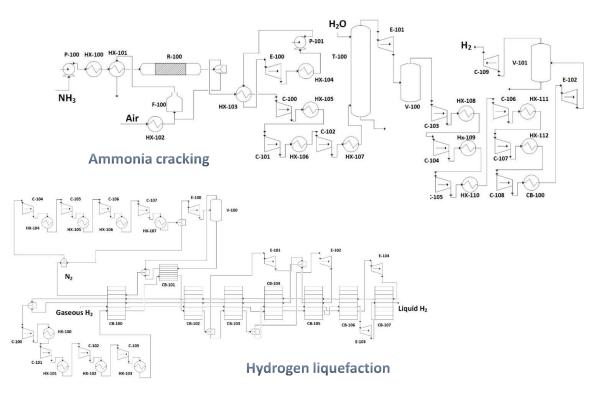
Centre of Excellence on Ammonia Technologies

UK SCENARIO FOR AMMONIA UTILIZATION

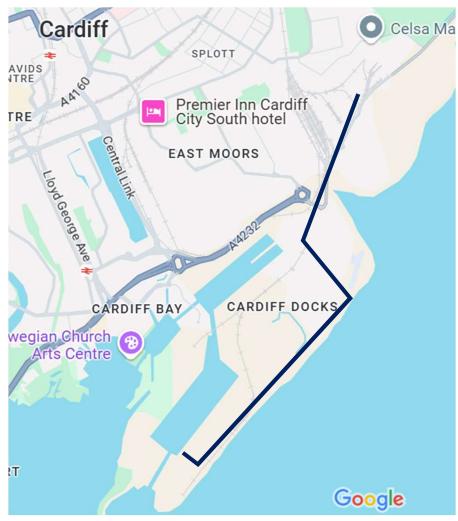
Energy portfolios for hydrogen delivery in Wales (Liquid H₂ versus Gaseous H₂)



- ☐ If gaseous H₂ is compared to liquid H₂, portfolios contain a higher amount of gaseous H₂ production.
- ☐ This **trend reverses** as **technological risk** increases.
- ☐ The first case is due to higher sensitivity of liquid H₂ production to energy price volatility (large energy consumption) while the second case highlights the impact of pipeline capital costs.



Centre of Excellence on Ammonia Technologies


UK SCENARIO FOR AMMONIA UTILIZATION

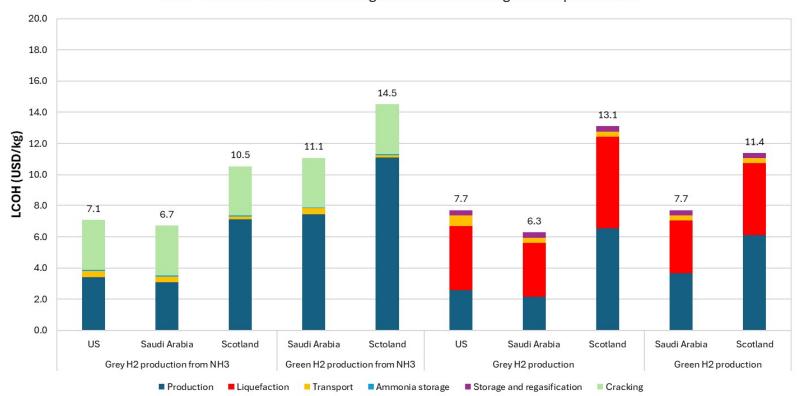
UK SCENARIO FOR AMMONIA UTILIZATION

- Engineering and economic analysis.
- Support from Celsa and WWU for technical requirements.

Centre of Excellence on Ammonia Technologies

UK SCENARIO FOR AMMONIA UTILIZATION

LCOH for alternatives considering small scale cracking with purification

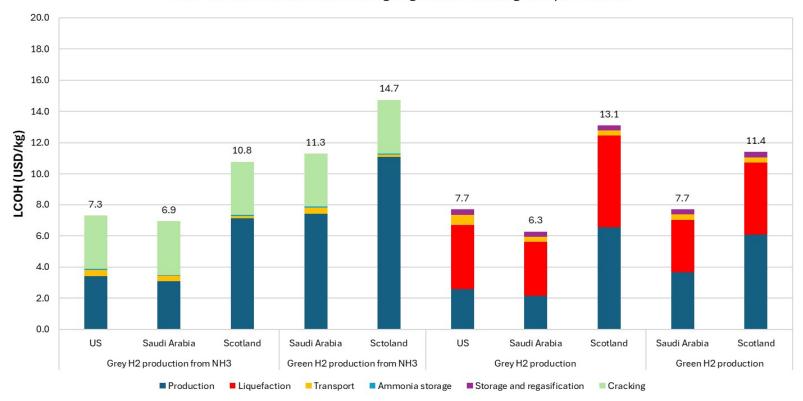

- The lowest cost alternative is the import of liquid hydrogen from Saudi Arabia.
- The difference between grey and green hydrogen from Saudi Arabia is 22%.
- Green hydrogen from Saudi Arabia can be comparable to grey hydrogen from the US.

Centre of Excellence on Ammonia Technologies

UK SCENARIO FOR AMMONIA UTILIZATION

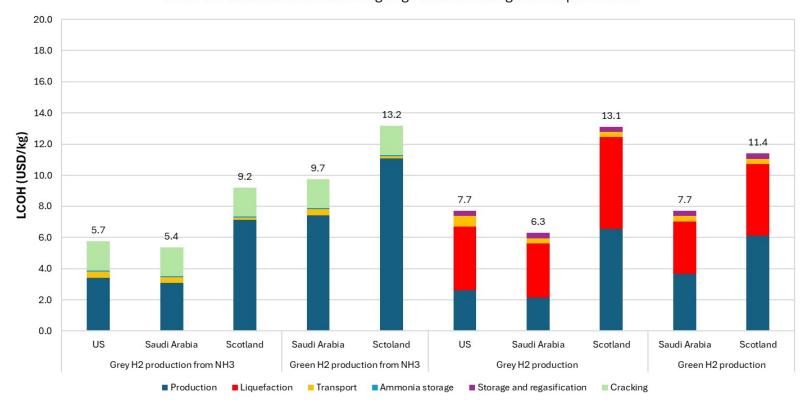
LCOH for alternatives considering small scale cracking with no purification




- Liquid hydrogen has the lowest cost.
 However, grey ammonia costs are similar
- The difference between ammonia and hydrogen (US and Saudi Arabia) is based on electricity prices.

Centre of Excellence on Ammonia Technologies

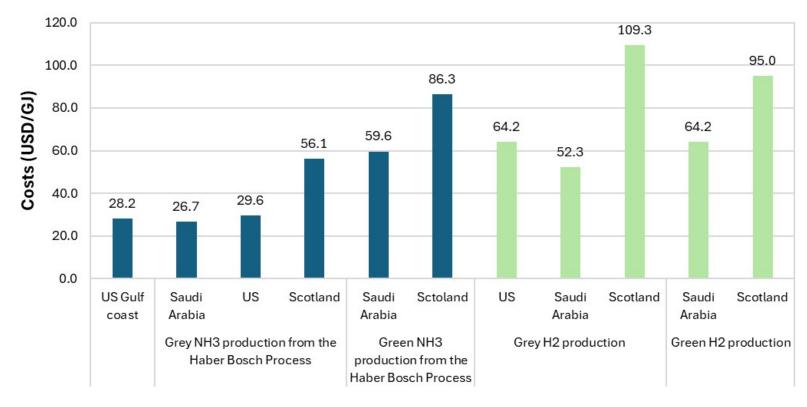
UK SCENARIO FOR AMMONIA UTILIZATION


- There are economies of scale (cracking).
- The lowest-cost alternative is liquid hydrogen from Saudi Arabia.

Centre of Excellence on Ammonia Technologies

UK SCENARIO FOR AMMONIA UTILIZATION

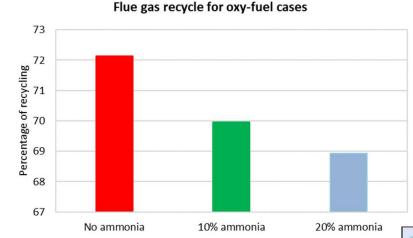
LCOH for alternatives considering large scale cracking with no purification



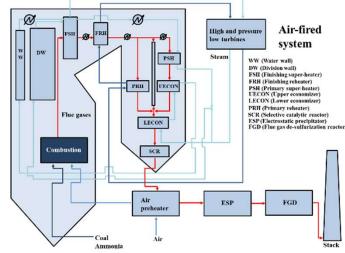
- Grey ammonia is the lowest-cost alternative.
- Electricity and natural gas prices have an important impact.

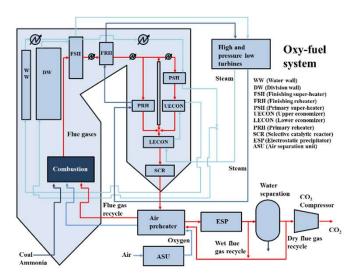
Centre of Excellence on Ammonia Technologies

UK SCENARIO FOR AMMONIA UTILIZATION


Production with transport and storage in Cardiff

 If directly used, ammonia is the lowest-cost alternative.

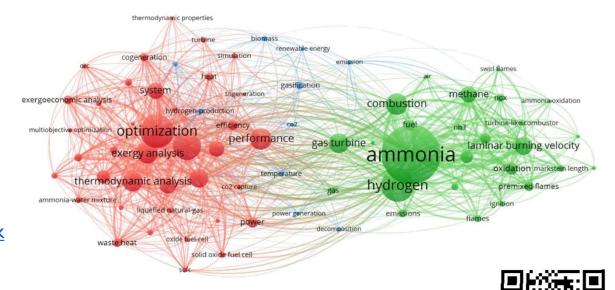

UK SCENARIO FOR AMMONIA UTILIZATION

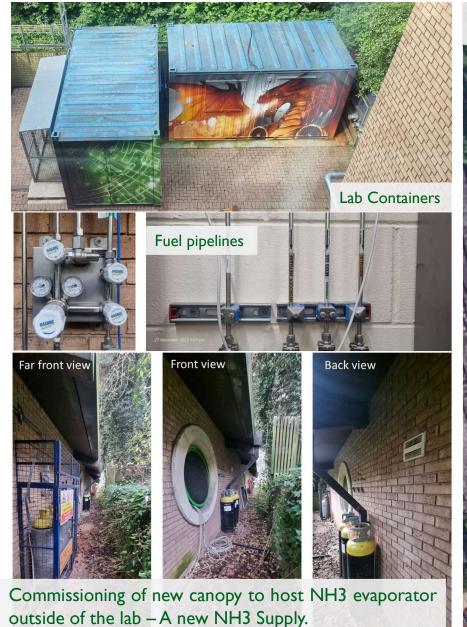

Ammonia Co-firing with coal

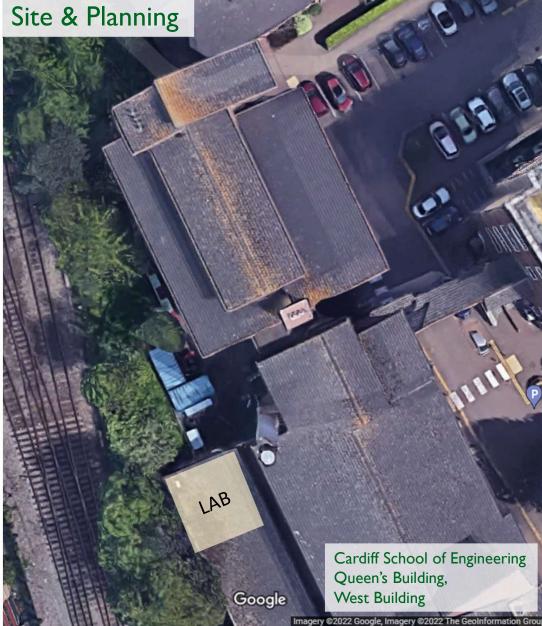
- The oxygen that may be produced in electrolysers could be used for oxy-fuel combustion.
- Ammonia co-firing could reduce CO₂ emissions in both air-fired and oxy-fuel combustion and process conditions are important to improve the performance of boilers.

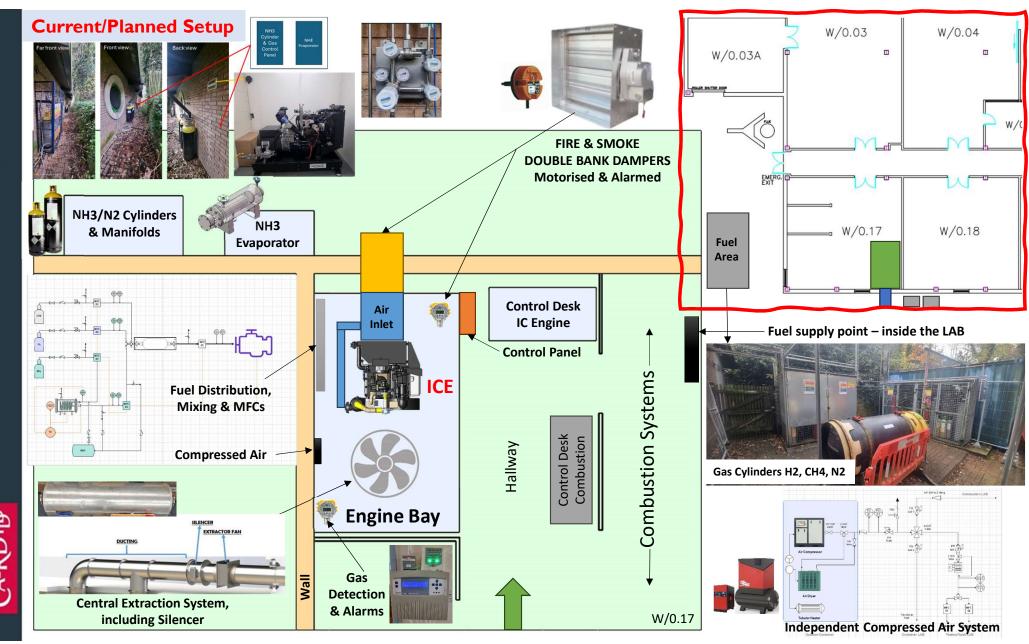
The increase in the concentration of nitrogen for the oxy-fuel combustion cases is within the 10% mole limit that could be allowed for CO₂ transport and geological storage.

Source: Taken from: Jano-Ito, Reed and Millan-Agorio (2014).

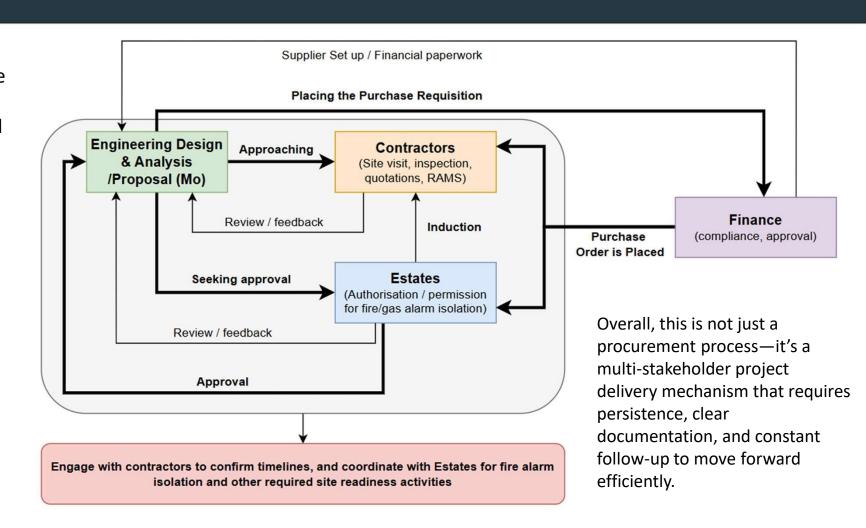

Centre of Excellence on Ammonia Technologies




NH3-H2 Engine Development



Dr Mo Alnajideen
AlnajideenMl@cardiff.ac.uk

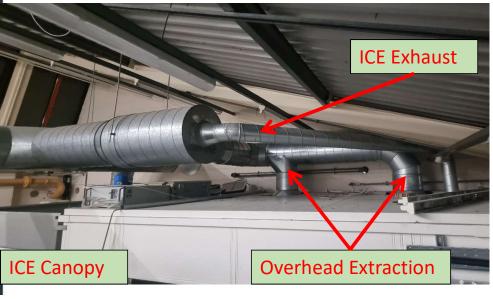


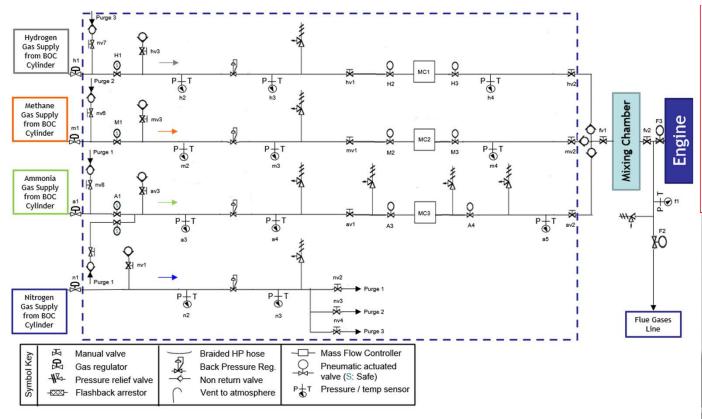
Centre of Excellence on Ammonia Technologies

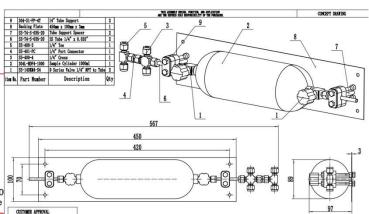
The diagram illustrates the intricate and resource-intensive process required to implement any engineering procurement or site-based modification.

Despite appearing linear, the workflow involves multiple interdependent stages, each demanding extensive coordination and formal approvals across various departments.

Centre of Excellence on Ammonia Technologies






Bronkhorst MFCs (NH3, H2, N2, CH4, Air)

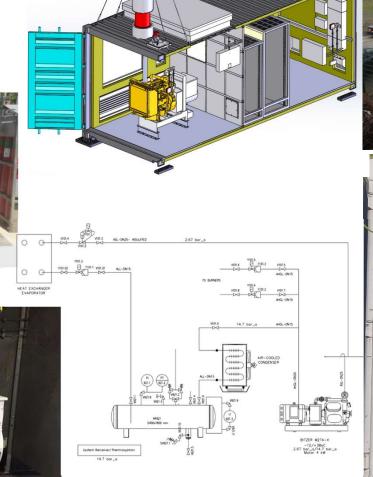
Terms and Conditions Total goods

£ 22,524.00 £ 3,378.60 Discount Subtotal £ 19,145.40 Shipping cost £ 287.18 Total amount (excl. VAT) £ 19,432.58 £ 3,886.52 **VAT 20%**

Total incl VAT £ 23,319.10 Lead time Ca. 4 working weeks after receipt of order 30 days from date of offer Validity quotation

1.5% of order value (CIF, UK mainland) £20.0 Delivery 30 days net, approved accounts, from invoice Payment

Customer Ref: ENGIN 31406484 JC155217-01 Certificate No: Test records: Stainless steel tube coil: Type: 8mm coil Serial No: N.A.


Type of Test: Hydrostatic Pressure Test - 8 Bar / Duration 30 mins

World first Green Ammonia power demonstrator developed by Siemens, Cardiff and Oxford University

12 February 2019

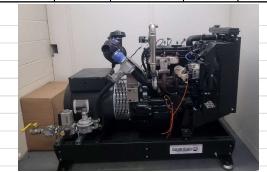
STFC Project

Phase I - ICE

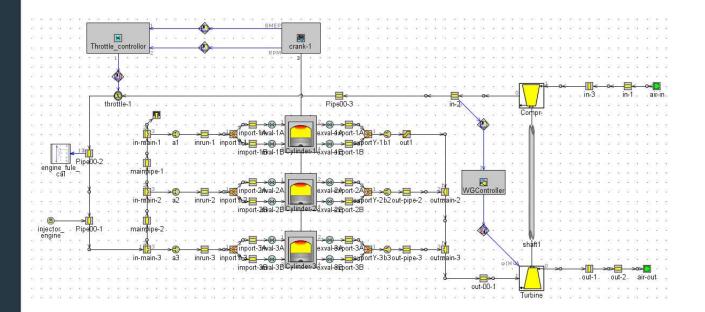
Centre of Excellence on Ammonia Technologies

Quantum Q3.3 TSI Spark Ignited Gas Engine – Experimental Test

Basic technical data

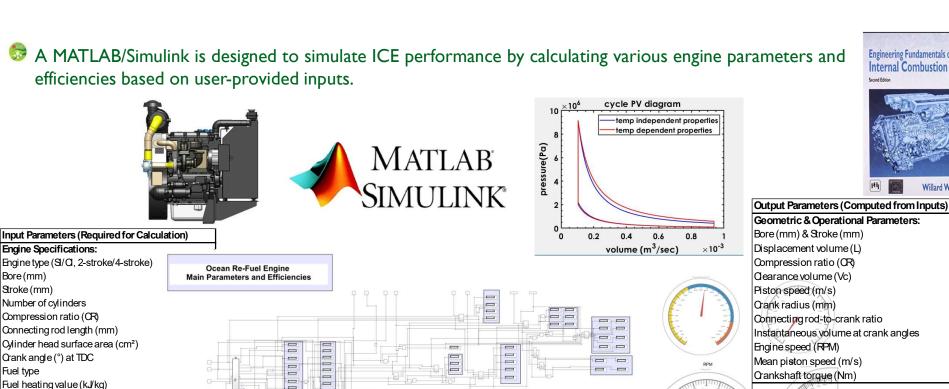

Number of cylinders	3
Cylinder arrangement	Vertical in-line
Cycle	Four stroke
Induction system	
Compression ratio	13 : 1
Bore	105 mm (4.13 in)
Stroke	
Cubic capacity	3.3 litres
Direction of rotation	Clockwise view from front
Firing order	1,2,3

General Installation


892 00 4 1 8 2 2	XXX YAVE O	Type of Operation				
Designation	Units	Prime	Stand-by	Prime	Stand-by	
		Hz	Hz	Hz	Hz	
		1500	1500	1800	1800	
Gross engine power	kWm	31.9	36.2	35.1	40.0	
Brake mean effective pressure	kPa	773	878	710	807	
Engine coolant flow 35 kPa restriction	l/min	48	48	88	88	
Combustion air flow	m³/min	2.5	2.9	3.1	3.7	
Exhaust gas flow (max)	m³/min	5.5	6.3	6.6	7.5	
Exhaust gas outlet temperature (max at standby)	°C	503	496	486	476.2	
Cooling fan air flow (200kPa external restriction)	m³/min	53	53	70	70	
Overall thermal efficiency (net)	%	35.6	36.4	34.6	35.5	
	kWe	28	32	31	35	
Genset electrical output	kVA	35	40	39	55	
Power factor		0.8	0.8	0.8	0.8	
Actual alternator efficiency	%	90.4	90.4	91.8	91.5	
Fuel consumption	m³/hr	8.8	9.8	9.8	10.9	
Energy balance						
Power in fuel (Fuel heat of combustion)	kW	87.1	97.0	96.7	107.8	
Power output (gross)	kW	31.9	36.2	35.1	40.0	
Power to cooling fan	kW	0.9	0.9	1.7	1.7	
Power output (net)	kW	31.0	35.3	33.4	38.3	
Power to coolant and lubricating oil	kW	22.2	24.8	26.8	27.4	
Power to exhaust	kW	23.5	26.7	27.6	31.3	
(Recoverable power, exhaust cooled to 120 °C)	kW	18.6	21.0	21.5	24.0	
Power to radiation	kW	9.5	9.2	7.2	9.2	

LOAD	Ambient°C	engine speed	Timing	Mains Gas pressure (mb)	MAT	MAP	Coolant temp°C	Top hose	Bottom hose	Phi	EFR position	Throttle pos	Fuel consumption kg/hr	Oil Temp	Oil pressure (Bar)	
0	19	1500	27	28	51.4	31	78.4	72	28	1	21.5	8.5	3.82	69	3.6	
5	19	1500	26.8	28	43.4	36.7	79.2	73.2	33.7	1	23.2	10.6	4.57	85	3.45	
10	19.5	1500	26.6	28	43	43.3	79.4	75	39.7	1	24.9	12.2	5.48	87	3.45	
15	19.5	1500	25.8	28	43.8	52	80	75.8	41	0.998	27	14.1	6.81	88	3.41	
20	19.5	1500	24.7	28	47.3	64.8	80.5	76.6	44.9	0.914	28.8	18.1	8.37	89	3.42	
25	20	1500	24	28	52.7	75.2	80.7	77.4	50.1	0.875	29.9	21.6	9.61	91	3.42	

EMISSIONS							EXHAUST	TEMPS		
LOAD	NO(ppm)	Nox(mg/m³)	CO(ppm)	02(%)	CO2(%)	Lambda	Exhaust temp	Cyl 1	Cyl 2	Cyl 3
0	23	64	67	19.9	0.18	0	347	549	555	553
5	230	604	389	18.2	0.88	7.64	460	584	585	585
10	518	1360	729	16.9	1.5	5.13	499	593	601	593
15	931	2525	996	15.1	2.29	3.69	527	605	630	611
20	1088	2992	1025	15.9	1.86	4.11	539	593	630	604
25	343	2778	956	16.4	1.66	4.61	542	589	631	602


Combustion & Emission Characteristics of a Q3.3 TSI Engine

ltem	Value
Engine speed (rpm)	1500
Power (kW)	31.9
Bore	105
Stroke	127
Cylinder	3
Compression ratio	13
Gas consumption (m³/h)	8.8

Item	Value	Error
Rated power	31.9kW	-
Simulated power	32.1kW	0.63%

- Using **GT-POWER** to build a ID simulation model of the engine, including intake and exhaust system model, cylinder model, turbocharging model, injector model, crankshaft drive module, and system boundary conditions (pressure, temperature, etc.);
- By adjusting ignition timing, intake pressure, compression ratio, and other parameters, the model calibration is completed. With a test data error of 0.63%, the model meets the requirements for subsequent calculations.

Engineering Fundamentals of the Internal Combustion Engine

Performance Parameters:

Brake thermal efficiency (%)

Mechanical efficiency (%)

Volumetric efficiency (%)

Specific emissions (g/kWh) Exhaust temperature (°C)

Indicated thermal efficiency (%)

Indicated mean effective pressure (IMEP) (kPa)

Brake mean effective pressure (BMEP) (kPa)

Specific fuel consumption (kg/kWh, g/kWh) Brake specific fuel consumption (BSFC) (g/kWh)

Indicated specific fuel consumption (ISFC) (g/kWh)

Exhaust gas composition (COQ CO, NO_x, HC, O₂) (%)

Friction mean effective pressure (FMEP) (kPa)

Indicated power (kW)

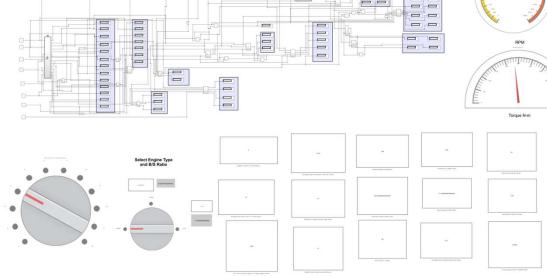
Brake power (kW)

Friction power (kW)

Willard W. Pulkrabek

Operating Conditions:

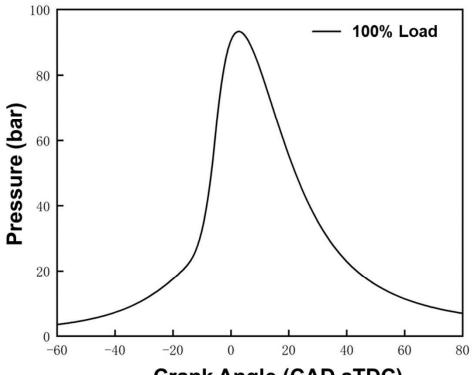
Volumetric efficiency (%)


Combustion efficiency (%)

Air-fuel ratio (AFR)

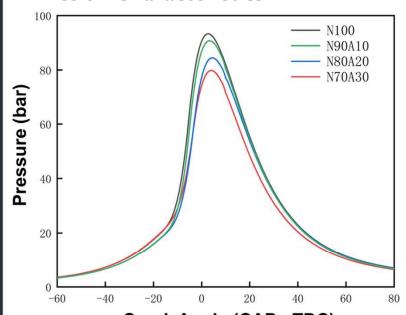
Engine speed (RPM) Intake air temperature (°C) Intake air pressure (kPa) Fuel mass flow rate (kg/s) Air mass flow rate (kg/s) Ambient pressure and temperature Combustion pressure curve

Fuel and Combustion Parameters:


Fuel heating value (MJ/kg) Fuel-air equivalence ratio

Centre of Excellence on Ammonia Technologies

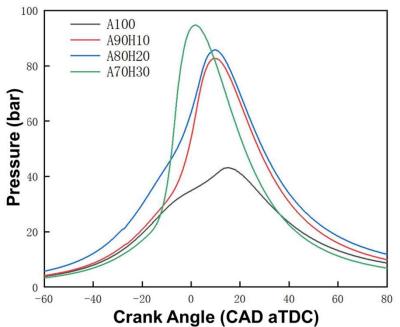
Natural Gas Engine Combustion Characteristics



Crank Angle (CAD aTDC)
Pressure curve of CH4 combustion

Parameter	V alue
Ignition Timing (CAD aTDC)	-26.00
Turbo charging (bar)	1.60
λ	1.15
Intake Pressure (bar)	1.00
Intake Temperature (K)	298.15
Compression Ratio	13

Simulation Results	Val ue
Power (kW)	32.1
Peak Pressure (bar)	93.3
Fuel Consumption Rate (g/kWh)	231.6
NOx (ppm)	4775


NH3/CH4 Combustion & Emission Characteristics

Crank Angle (CAD aTDC)
Pressure curve of NH3/CH4 combustion

Fuel Mixture	Power (kW)	Peak Pressure (Bar)	Fuel Consumptio n (g/kWh)	NOx (ppm)
N100	31.2	93.3	231.6	4775
N90A10	30.7	90.8	226.8	8222
N80A20	30.4	84.5	240.2	8197
N70A30	28.6	79.7	367.8	7982

NH3/H2 Combustion & Emission Characteristics

Pressure curve of NH3/H2 combustion

Fuel Mixture	Peak Pressure (Bar)	Fuel Consumption (g/kWh)
A100	42.8	691.4
A90H10	82.6	576.3
A80H20	85.93	521.3
A70H30	94.5	429.8

Centre of Excellence on Ammonia Technologies

Parameter Group	Input Parameter	Value	Notes
	Number of cylinders	3	Vertical in-line
	Bore	105 mm	
	Stroke	127 mm	
Engine Geometry	Compression ratio	13	
	Crankshaft rotation direction	Clockwise	From front view
	Firingorder	1-2-3	
	Engine displacement (capacity)	3.3 L	Calculated from bore/stroke and cylinder cour
	Engine speeds	1500 rpm / 1800 rpm	Prime and standby
Operating Conditions	Intake air temp	25 °C	Standard test condition
	Barometric pressure	100 kPa	
	Relative humidity	30%	
	Induction type	Turbocharged	Forced induction
Induction	Max air intake restriction	2-4 kPa	Clean to dirty filter
	Combustion air flow rate	2.5 – 3.7 m ³ /min	Varies with speed and load
	Fueltype	Natural Gas	LHV = 35.66 MJ/m ³
Fuel Properties	Fuel consumption	8.8 - 10.9 m ³ /hr	Load and speed dependent
	Supply pressure	Min 25 mbar	Contact OEM if lower
	Combustion type	Spark-ignition	Otto cycle
ombustion & Ignition	Ignition system	Electronic, 1 coil per cylinder	Inductive
CATALON Y NO PETER LA CALLANS - LA CASA BARCAN	Lambda or equivalence ratio	Required input	Based on AFR and fuelling strategy
	Max back pressure (at 1800 rpm)	15 kPa	
Exhaust	Exhaust gas flow rate	5.5 – 7.5 m ³ /min	
	Exhaust temp (max)	476-503°C	
	Coolant flow rate	48 – 88 L/min	
	Coolant system capacity	10.2 L (with radiator)	
Cooling System	Coolant temp range	82-105°C	
	Fan characteristics	457 mm, 7-blade, pusher type	
	Total oil system capacity	8.3L	
Lubrication	Oil pressure	276 – 470 kPa	
- mar a market parent	Flywheel moment of inertia	1.14 kg·m²	
Mechanical	Engine rotational inertia	0.141 kg·m²	
	Dry/Wet weight	398 / 416 kg	
Installation	Engine dimensions (LxWxH)	1010 × 640 × 1050 mm	
	Max installation angle	25°	All directions

Note

Fuel Properties (changeable; see Tab "INPUTS-1 (Fuel Blends)" Power in fuel (Fuel heat of combustion) is fixed at 100kW

Basic technical data

Duoio tooriiriour dutu	
Number of cylinders	3
Cylinder arrangement	
Cycle	Four stroke
Induction system	Turbocharged
Compression ratio	13 : 1
Bore	105 mm (4.13 in
Stroke	127 mm (4.99 in)
Cubic capacity	
Direction of rotation	wise view from front
Firing order	123

Q3.3TSI Engine – Technical Data (collected from the Datasheet)

	Units	Type of Operation				
Designation		Prime	Stand-by	Prime Hz	Stand-by Hz	
		Hz	Hz			
		1500	1500	1800	1800	
Gross engine power	kWm	31.9	36.2	35.1	40.0	
Brake mean effective pressure	kPa	773	878	710	807	
Engine coolant flow 35 kPa restriction	I/min	48	48	88	88	
Combustion air flow	m³/min	2.5	2.9	3.1	3.7	
Exhaust gas flow (max)	m³/min	5.5	6.3	6.6	7.5	
Exhaust gas outlet temperature (max at standby)	°C	503	496	486	476.2	
Cooling fan air flow (200kPa external restriction)	m³/min	53	53	70	70	
Overall thermal efficiency (net)	%	35.6	36.4	34.6	35.5	
C	kWe	28	32	31	35	
Genset electrical output	kVA	35	40	39	55	
Power factor		0.8	0.8	0.8	0.8	
Actual alternator efficiency	%	90.4	90.4	91.8	91.5	
Fuel consumption	m³/hr	8.8	9.8	9.8	10.9	
Constitutional nation (IAM) (final heat of a		00.01	00.45	101 45	110.00	

thermal power (kW) 'fuel heat of combustion' 89.61 99.45 101.45 112.68 ~ 100 kW

_ ≻	10
F ST	lg≽
	S
` } }	EP.
ン 台	F C

1	-	-	_			II **
Fuel Blend	Blend Ratio (vol%)	AFR (Φ=0.6)	AFR (Φ=1.0)	AFR (Φ=1.4)	LHV (MJ/kg)	Mechanism
CH4	100%	28.67	17.20	12.29	50.00	GRI-Mech 3.0
H2	100%	57.17	34.30	24.50	120.00	San Diego Mechanism, or AramcoMech 3.0
NH3	100%	10.08	6.05	4.32	18.60	Okafor et al. (2018) or Konnov v2019
CH4/H2	30%:70%	44.03	26.42	18.87	65.87	
CH4/H2	50%:50%	38.18	22.91	16.36	57.82	GRI-Mech 3.0 or AramcoMech 2.0 or 3.0
CH4/H2	70%:30%	33.70	20.22	14.44	53.58	
01147112	7070.0070	00.70	20.22	24,44	00.00	
CH4/NH3	30%:70%	12.52	7.51	5.36	27.63	
CH4/NH3	50%:50%	14.92	8.95	6.39	33.83	Konnov + GRI-Mech merged, or Okafor et al. modified
CH4/NH3	70%:30%	18.47	11.08	7.91	40.18	
CH4/NH3/N2	30%:30%:40%	24.87	14.92	10.66	15.88	
CH4/NH3/N2	40%:40%:20%	18.65	11.19	7.99	23.76	Same as above + treat N ₂ as inert in thermodynamic model
CH4/NH3/N2	50%:30%:20%	21.18	12.71	9.08	26.48	
		40.05			05.07	
CH4/H2/NH3	30%:30%:40%	18.05	10.83	7.74	35.97	11.01 / / / / / / / /
CH4/H2/NH3	40%:40%:20%	24.52	14.71	10.51	45.25	HyChem/Aramco + Konnov/Okafor merged
CH4/H2/NH3	50%:30%:20%	23.52	14.11	10.08	44.63	
CH4/H2/NH3/N2	25%:20%:50%:5%	16.18	9.71	6.94	28.42	
CH4/H2/NH3/N2	25%:25%:25%:25%	26.40	15.84	11.31	21.56	Company of N and inset
CH4/H2/NH3/N2	30%:30%:20%:20%	28.13	16.88	12.06	26.10	Same as above + N ₂ as inert
CH4/H2/NH3/N2	40%:20%:20%:20%	26.82	16.09	11.49	27.33	
NH3/H2	30%:70%	23.82	14.29	10.21	40.55	
NH3/H2	50%:50%	17.15	10.29	7.35	29.33	Okafor et al. (2018)
NH3/H2	70%:30%	13.40	8.04	5.74	23.50	

۱۲ ≻	10
느병	요돌
בּצוֹ	
~ ≥	도쯦
,₹	2,₹

Source	Mechanisms
GRI-Mech 3.0 / AramcoMech 2.0 or 3.0	CH ₄ /H ₂
Konnov Mechanisms	CH ₄ /NH ₃
Okafor et al. (2018)	NH ₃ /H ₂
San Diego Mech	H ₂
San Diego Mech	H ₂ /CO/CH ₄

Cracking NH3 Cases [2 NH3 → 3H2 + N2]								
Fuel Bland	Blend Ratio (vol%)				AED (#=0.6)	AFR(Φ=0.6) AFR(Φ=1.0) AFR		LUV/MI/La
Fuel Blend	CH4	NH3	H2	N2	ΑΓΚ (Ψ-0.0)	ΑΓΚ (Ψ-1.0)	ΑΓΚ (Ψ-1.4)	LHV (MJ/Kg)
CH4/NH3 - 0% cracked NH3	100	0.00	0.00	0.00	28.67	17.20	12.29	50.00
CH4/NH3 - 5% cracked NH3	95	4.52	0.36	0.12	26.53	15.92	11.37	48.52
CH4/NH3 - 10% cracked NH3	90	8.18	1.36	0.45	25.15	15.09	10.78	47.36
CH4/NH3 - 15% cracked NH3	85	11.09	2.93	0.98	24.30	14.58	10.41	46.46
CH4/NH3 - 20% cracked NH3	80	13.33	5.00	1.67	23.82	14.29	10.21	45.78
CH4/NH3 - 25% cracked NH3	75	15.00	7.50	2.50	23.62	14.17	10.12	45.27
CH4/NH3 - 30% cracked NH3	70	16.15	10.38	3.46	23.67	14.20	10.14	44.95
CH4/NH3 - 35% cracked NH3	65	16.85	13.61	4.54	23.95	14.37	10.26	44.78
CH4/NH3 - 40% cracked NH3	60	17.14	17.14	5.71	24.43	14.66	10.47	44.77
CH4/NH3 - 45% cracked NH3	55	17.07	20.95	6.98	25.13	15.08	10.77	44.92
CH4/NH3 - 50% cracked NH3	50	16.67	25.00	8.33	26.08	15.65	11.18	45.26
CH4/NH3 - 55% cracked NH3	45	15.97	29.27	9.76	27.28	16.37	11.69	45.81
CH4/NH3 - 60% cracked NH3	40	15.00	33.75	11.25	28.78	17.27	12.34	46.62
CH4/NH3 - 65% cracked NH3	35	13.79	38.41	12.80	30.67	18.40	13.14	47.76
CH4/NH3 - 70% cracked NH3	30	12.35	43.24	14.41	33.03	19.82	14.16	49.36
CH4/NH3 - 75% cracked NH3	25	10.71	48.21	16.07	36.00	21.60	15.43	51.58
CH4/NH3 - 80% cracked NH3	20	8.89	53.33	17.78	39.80	23.88	17.06	54.78
CH4/NH3 - 85% cracked NH3	15	6.89	58.58	19.53	44.82	26.89	19.21	59.63
CH4/NH3 - 90% cracked NH3	10	4.74	63.95	21.32	51.62	30.97	22.12	67.54
CH4/NH3 - 95% cracked NH3	5	2.44	69.42	23.14	61.32	36.79	26.28	82.45
CH4/NH3 - 100% cracked NH3	0	0.00	75.00	25.00	76.22	45.73	32.66	120.00

Engine Performance Results

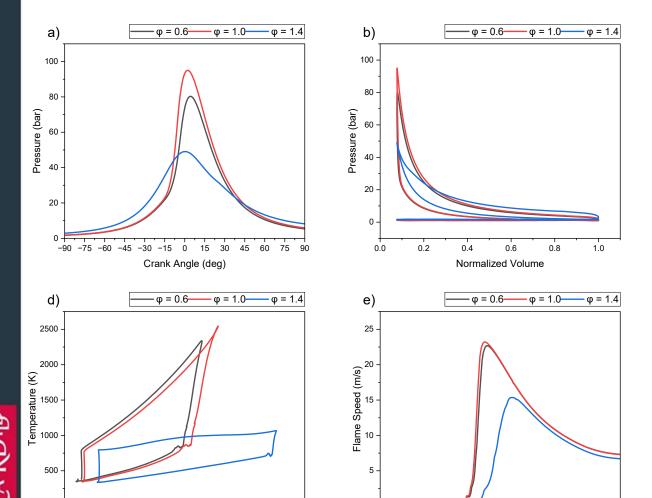
Canolfan Rhagoriaeth ar Dechnolegau Amonia

Centre of Excellence on Ammonia Technologies

Metric	Unit	Description	Output	Description	Result	Description
Brake Power	kW	Net output at the crankshaft	Cylinder Pressure vs. Crank Angle	Combustion pressure trace	Mass Flow Rate (air, fuel, exhaust)	At engine ports and system boundaries
Indicated Power	kW	Power developed in cylinders	Heat Release Rate	Energy release timing	Boost Pressure & Turbocharger Speed	For turbocharged engines
Brake Torque	Nm	Torque output at the crankshaft	Cumulative Heat Release	Total chemical energy released	Intake & Exhaust Valve Flow Coefficients	Valve operation and timing effects
Brake Mean Effective Pressure (BMEP)	bar	Engine loading measure	Ignition Delay / Burn Duration	Combustion phasing metrics	Manifold Pressure & Temperature	For flow wave analysis
Indicated Mean Effective Pressure (IMEP)	bar	Gross pressure-based indicator	Pressure Rise Rate	Used to predict knock tendency	Pumping Losses	Work lost in moving gases in/out of cylinders
Brake Thermal Efficiency	96	Efficiency of fuel-to-power conversion	Peak Cylinder Pressure & Location	Max pressure and its crank angle		
BSFC (Brake Specific Fuel Consumption)	g/kWh	Fuel use per unit brake power			Figures Generated:	
Volumetric Efficiency	96	Intake air filling effectiveness	Figures Generated:		Mass flow vs. crank angle or time	
Mechanical Efficiency	96	Ratio of brake to indicated power	Pressure vs. Crank Angle plot		Intake/exhaust pressure wave diagrams	
			Heat Release Rate vs. Crank Angle		Turbocharger performance maps	
			P-V (Pressure-Volume) diagrams		Valve lift vs. crank angle profiles	
Feet	i Ddi		The weet Manager	near Describe	Fred a Observ	in a life and the law and
	ssions Predic		Thermal Manage			ical Energy Balances
Emission	Units	Description	Output	Description	Output	Description
NO _x	ppm or g/kWh	Nitric oxides from high-temperature	Wall Heat Transfer	Heat loss from combustion to walls	Fuel Energy Input	LHV × mass flow
CO	ppm or g/kWh	Incomplete combustion indicator	Coolant Temperature	Circuit temperature and flow rates	Energy Recovered as Brake Work	Useful output
нс	ppm or g/kWh	Unburnt hydrocarbons	Oil Circuit Temperature	Engine oil thermal performance	Waste Heat via Coolant, Exhaust, etc.	Thermal loss analysis
CO ₂	g/kWh or %vol	Fuel carbon balance	Heat Rejection Breakdown	By coolant, oil, exhaust, etc.	Combustion Efficiency	Based on energy balance and emissions
Particulate Matter	mg/m³	(If soot models applied)	CHT Wall Temperature (if 3D included)	Conjugate heat transfer maps		
					A	coustics
Figures Generated:			Figures Generated:		Sound Pressure Level (SPL)	For intake/exhaust/muffler
Emissions vs. load/rpm			Heat rejection vs. time		Transmission Loss	Silencer effectiveness
NOx vs. equivalence ratio or boost			Coolant temperature vs. time		Frequency Spectrum	FFT of pressure signals
Emissions breakdown per cylinder			Wall heat transfer vs. crank angle or cylinder index			
					Figures Generated:	
			Transient and Drive	Cycle Outputs	Frequency response plots	
			Metric	Description	SPL vs. frequency for different locations	
			RPM vs. Time	Speed profile tracking	Transmission loss vs. frequency	
			Torque vs. Time	Load-following characteristics		
			Turbo Lag, Throttle Response	Transient behaviours		
			Temperature vs. Time	Coolant, oil, component temps		
			Emissions vs. Time	Instantaneous or integrated		
			Figures Generated:			
			Torque/RPM vs. time			
			The second secon			

7500

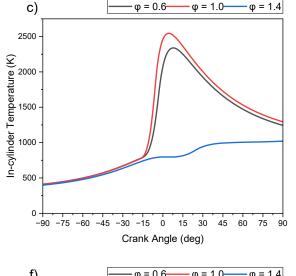
8000

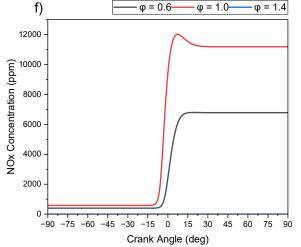

8500

Entropy (J/kg-K)

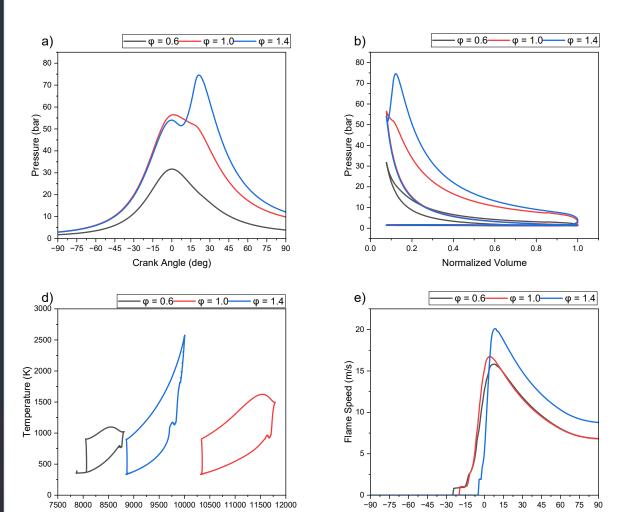
9000

9500


CH4 - RPM = 1500 | Throttle Angle = 50 | Phi = 0.6 to 1.4

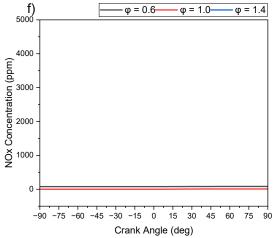


-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90


Crank Angle (deg)

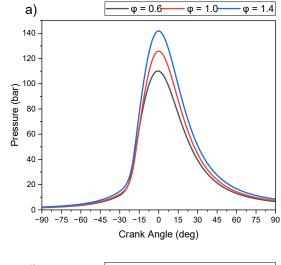
	$\varphi = 0.6$	$\varphi = 1.0$	$\varphi = 1.4$
Engine Speed (rpm)	1500	1500	1500
Brake Torque (N-m)	180.08	202.95	110.80
Brake Power (kW)	28.29	31.88	17.40
BM⊞ (bar)	6.86	7.73	4.22
Air/fuel ratio	23.63	18.67	8.66

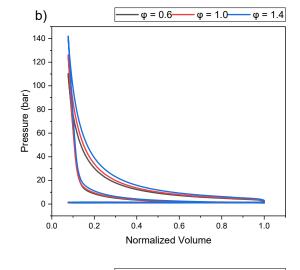

H2 - RPM = 1500 | Throttle Angle = 50 | Phi = 0.6 to 1.4

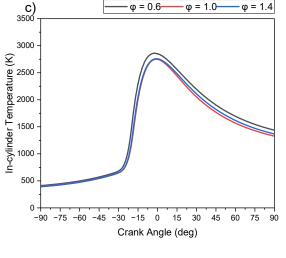


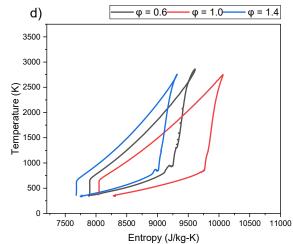
Crank Angle (deg)

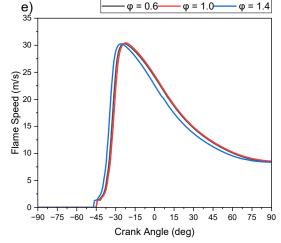
Entropy (J/kg-K)

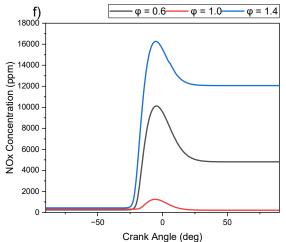

	$\varphi = 0.6$	$\varphi = 1.0$	$\varphi = 1.4$
Engine Speed (rpm)	1500	1500	1500
Brake Torque (N-m)	33.22	173.70	370.15
Brake Power (kW)	5.22	27.29	69.77
BM⊞ (bar)	1.27	6.62	14.10
Air/fuel ratio	94.94	16.79	30.89






NH3/H2 70%:30%vol - RPM = 1500 | Throttle Angle = 50 | Phi = 0.6 to 1.4


	$\varphi = 0.6$	$\varphi = 1.0$	$\phi = 1.4$
Engine Speed (rpm)	1500	1500	1500
Brake Torque (N-m)	195.07	321.59	173.21
Brake Power (kW)	32.68	50.52	27.21
BM⊞ (bar)	7.43	12.25	6.60
Air/fuel ratio	7.88	5.18	6.78



REVIEW

Chapter Item | 31 December 2024 The institution of formation Chapter 5

Recent Publications

Ammonia-fueled internal combustion engines

Authors: H. Shi, E. Boulet, D. Dong, M. Alnajideen, S. Mashruk, Z. Zhang, and A. Valera-Medina Authors Info & Affiliations Publication: Ammonia Combustion Applications for Energy Systems • https://doi.org/10.1049/PBPO224E_ch5

Chapter Item | 31 December 2024

Chapter 6

Combustion systems for ammonia-fuelled gas turbines and other propulsion devices

Authors: H. Shi, S. Mashruk, M. Alnajideen, and A. Valera-Medina Authors Info & Affiliations Publication: Ammonia Combustion Applications for Energy Systems • https://doi.org/10.1049/PBPO224E_ch6

Reading: Techno-economics of ammonia as an energy carrier. Exporting wind from the North Atlantic Ocean/North Sea to Wales

Taxonomy: Techno-economics and Life Cycle Analyses

Research and Development

Techno-economics of ammonia as an energy carrier. Exporting wind from the North Atlantic Ocean/North Sea to Wales

Marco Jano-Ito ≥, Agustin Valera-Medina

Green Energy and Resources Volume 1, Issue 4, December 2023, 100046

Open Access Article

Ammonia Combustion

Agustin Valera-Medina, Yuyang Li, Hao Shi, Dongsheng Dong, Mara de Joannon and

Applications for **Energy Systems**

Edited by

Economic Feasibility of Using Municipal Solid Waste and Date Palm Waste for Clean Energy Production in Qatar

by Ahmad Mohamed S. H. Al-Moftah 1,2 D. Mohammad Alnajideen 1,* D. Fatima Alafifi 3,4 Pawel Czyzewski 5, Hao Shi 1,6, Mohammad Alherbawi 3 0, Rukshan Navaratne 1 and Agustin Valera-Medina 1 10

Carbon Neutrality

Emission reduction and cost-benefit analysis of the use of ammonia and green hydrogen as fuel for marine applications

Yunfan Wu a 🖾 , Aiguo Chen a , Hua Xiao a 💍 🖾 , Marco Jano-Ito b , Mustafa Alnaeli b , Mohammad Alnajideen b, Syed Mashruk b, Agustin Valera-Medina b

International Journal of Hydrogen Energy

Volume 49, Part B, 2 January 2024, Pages 1597-1618

Ammonia combustion and emissions in practical applications: a review

Mohammad Alnajideen^{1*}, Hao Shi², William Northrop³, David Emberson⁴, Seamus Kane³, Pawel Czyzewski⁵, Mustafa Alnaeli¹, Syed Mashruk¹, Kevin Rouwenhorst⁶, Chunkan Yu⁷, Sven Eckart⁸ and Agustin Valera-Medina¹ Ammonia combustion in furnaces: A review

A. Valera-Medina a 😕 🖾 , M.O. Vigueras-Zuniga b, H. Shi a, S. Mashruk a, M. Alnajideen a, A. Alnasif a c, J. Davies a, Y. Wang de, X. Zhu d, W. Yang f, Y.B. Cheng de

Open Access

Canolfan Rhagoriaeth ar Dechnolegau Amonia

Centre of Excellence on Ammonia Technologies

- Mo is currently conducting system simulations and drafting a journal manuscript focused on an ammonia-based solar—geothermal heat pump for residential heating and cooling applications. In parallel, Mo is also working on a comparative study assessing the performance, efficiency, and environmental impact of various refrigerants in low-temperature heat pump systems.
- Two targeted funding calls are currently under development:
 - © Clean Farm Energy WalesFocus:

 Deploying ICE technology in agricultural combined heat and power (AgriCHP) systems.
 - Interregional GreenTrack Programme (Consortia-based)Focus: Decarbonising industrial locomotives using clean ammonia/hydrogen ICE systems.

Modelling study of a novel dual heat source ammonia-based heat pump system

Hao Shi^{a,b}, Mohammad Alnajideen^{a*} and Agustin Valera-Medina^a

a. Cardiff University, Queen's Building, Cardiff CF24 3AA, United Kingdom

b. Reactive Flows and Diagnostics, Department of Mechanical Engineering, Technical University of Darmstadt, Darmstadt 64287, Germany

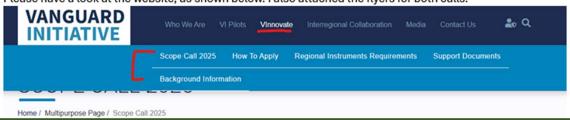
1. Regional (Welsh Government):

SMART Flexible Innovation Support (via SMART FIT - Circular Economy theme)

Funding: £200k per year for 2 years

Deadline: ASAP – before the end of the year. Proposal: AgriCHP- Clean Farm Energy

2. Interregional (EURO):

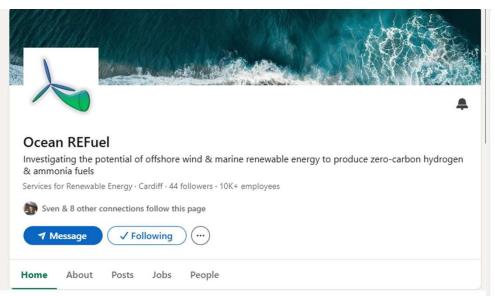

Vinnovative Call 2025. This call requires alignment with regional instruments (the SMART FIT programme).

Deadline: September 2025, but we should begin establishing the consortium as soon as possible.

Proposal: GreenTracks- Decarbonising Industrial Locomotives

 $Funding \ starts \ from \ \pounds 200 \ per \ year \ for \ 3 \ years. \ We \ can \ claim \ higher \ through \ one \ of \ our \ EURO \ SMEs \ or \ Research \ Partners.$

Please have a look at the website, as shown below. I also attached the flyers for both calls.



Canolfan Rhagoriaeth ar Dechnolegau Amonia

Centre of Excellence on Ammonia Technologies

Next Steps: Project Delivery Plan [Sep - Dec]

- Gibbson (Contractor) Complete the installation of NG pipeline & Inclusion of the gas interlock.
- 🐯 M&M (Contractor) Installation of the fuel delivery system to the canopy area [Start on 22 Sept 2025 for 3 weeks]
- GDS (Contractor) Installation and commissioning of new gas detection units
- Finalise the engine installation by completing the electrical, fuel, and silencer connections
- Publishing 2 journal paper by the end of this year.
- Targeting two funding calls
- 4th SoAE USA
- RUN the ENGINE Ist trial by November 2025

New Review on Ammonia as a Fuel

This paper explores the latest advancements in using ammonia as a fuel substitute, focusing on the key challenges that must be addressed for commercial deployment. Uniquely, it includes insights from industry partners actively working on green ammonia technologies, and tackles the fundamental complexities of ammonia combustion critical for real-world applications.

Read the full article at: https://lnkd.in/epsMT34t

Agustin Valera Medina Will Northrop Sven Eckart Kevin Rouwenhorst Paweł Czyżewski

#AmmoniaFuel #Decarbonisation #EnergyTransition #GreenAmmonia #Combustion #SustainableEnergy #EnergyResearch

Overview

Overview =======

Ocean REFuel is an innovative £10M research project which will investigate the potential of harnessing offshore wind and marine renewable energy to produce zero carbon hydrogen and ammonia fuels.

Led by the University of Strathclyde, in collaboration with a world-leading team of researchers from the Universities of Nottingham, Cardiff, Newcastle and Imperial College London, the multi-disciplinary project will explore ways of converting ocean energy into fuels for use in heating, energy storage and difficult to decarbonise transport applications.

The five-year collaboration, which involves 28 industrial partners, including BP, Scottish Power, National Grid, ENI along with the UK Health & Safety Executive, will also produce a blueprint for the first integrated Ocean Renewable Fuel production facility.

Through economic modelling and wider analysis of political economy outcomes and narrative development, CEP researchers will bring crucial understanding of the economy-wide impacts of green hydrogen production through ocean renewable energy to the project.

By looking at the broader socio-economic picture, CEP research can help bring understanding of what investments in ocean renewable energy and green hydrogen production could mean for GDP, jobs and earnings, and in turn the long-term prosperity, as well as sustainability of the UK.

This understanding will be critical to building consensus across government, industry and citizens on the contribution that ocean renewable energy and hydrogen production can make economically, politically and socially. This consensus will be crucial to ultimately delivering feasible and robust pathways to net zero targets.

Partners

Lead partner - University of Strathclyde

Other partners - Cardiff University, University of Nottingham, Newcastle University and Imperial College

Ocean REFuel

Website

https://www.oceanrefuel.ac.uk/

Industry

Services for Renewable Energy

Company size 10,001+ employees

Founded

2021

Specialties

Energy, Offshore renewable, Green hydro infrastructure. Economic and policy mos conversion, and Floating platform

Commitments

Featured

Social impact

Environmental sustainability

Career growth and learning

Diversity, equity, and inclusion

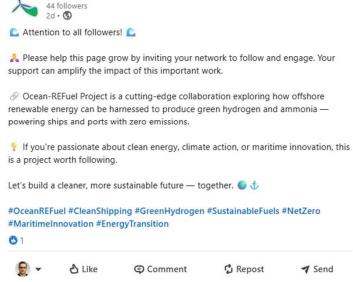
Economic modelling & policy analysis: To assess macroeconomic impacts—GDP, jobs, earnings—of green hydrogen eployment via ocean renewables and develop policy narratives. Building consensus: Work across government, industry, and public spheres to foster understanding and consensus on ocean-based fuel pathways to Net Zero.

Home | Ocean REFuel

oceanrefuel ac uk

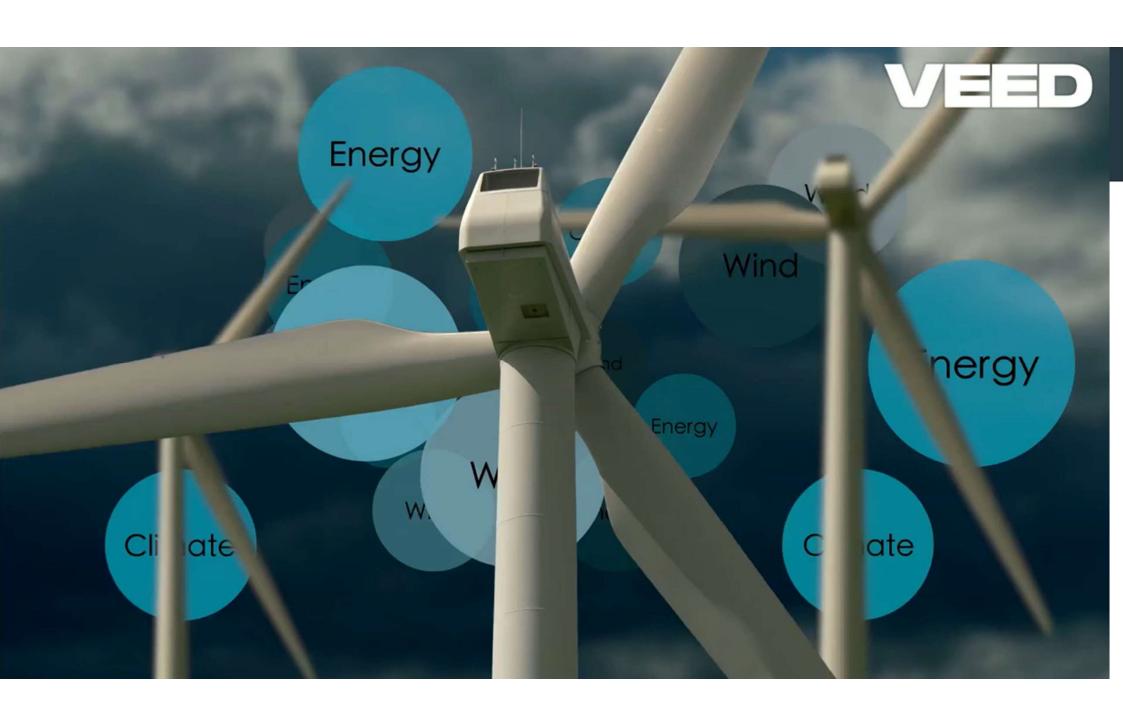
Environmental sustainability

From inception, the project targets offshore wind and marine platforms that are safe, sustainable, resilient, affordable and environmentally sensitive, ensuring minimal disturbance to marine ecosystems and landscapes. Throughout its technical workstreams—such as fuel conversion, storage, infrastructure, and logistics—the project includes environment... See more

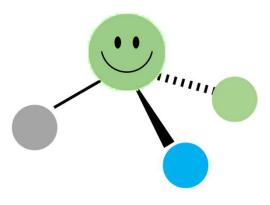

Company pledge

Home | Ocean REFuel

oceanrefuel.ac.uk


ng work involving offshore engineering, rironmental policy. Technical upskilling: Researchers newable energy platforms Hydrogen/am... See more

gen Hub + Industrial Decarbonisation Research and h Centre) • Faraday Institution • EPSRC Decarbonising and Solutions) • Catapult Offshore Renewable Energy •



Canolfan Rhagoriaeth ar Dechnolegau Amonia

Centre of Excellence on Ammonia Technologies

Thank you Diolch

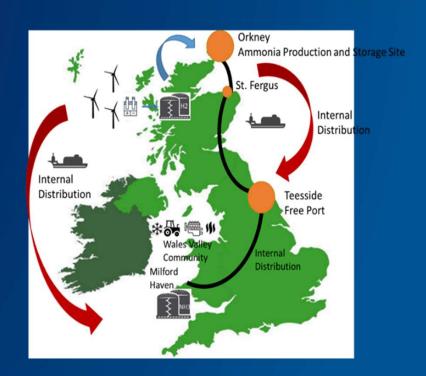
School of Engineering
Ysgol Peirianneg

Blogs

Centre of Excellence on Ammonia Technologies

Home About us People News & Media Research & Projects NHs Symposium Series Journal of Ammonia Energy Events & Gallery Partners 😥 Contact us

WP4.2 - 'Carbonaceous' H2



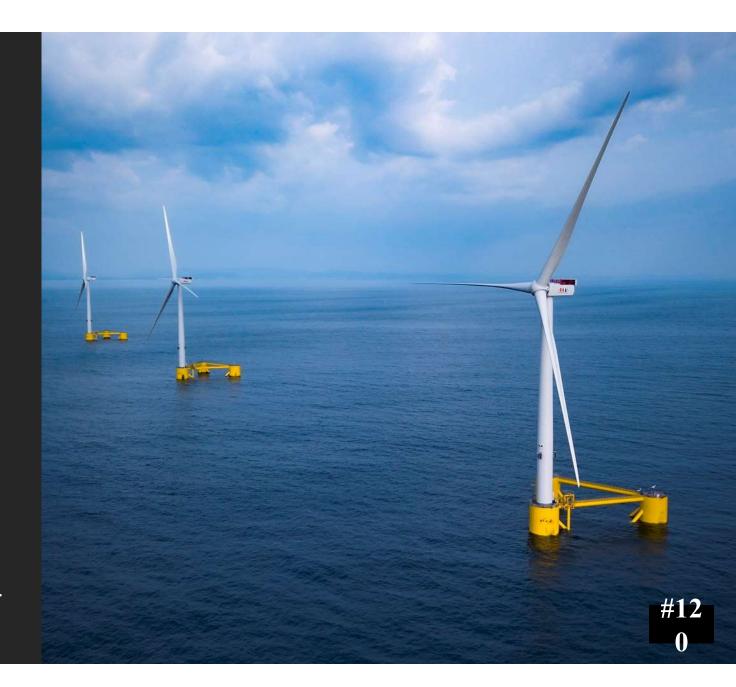
H₂-based systems may be able to move to 100% initially but other scenarios may favour the use of intermediate (high) blends in early operation.

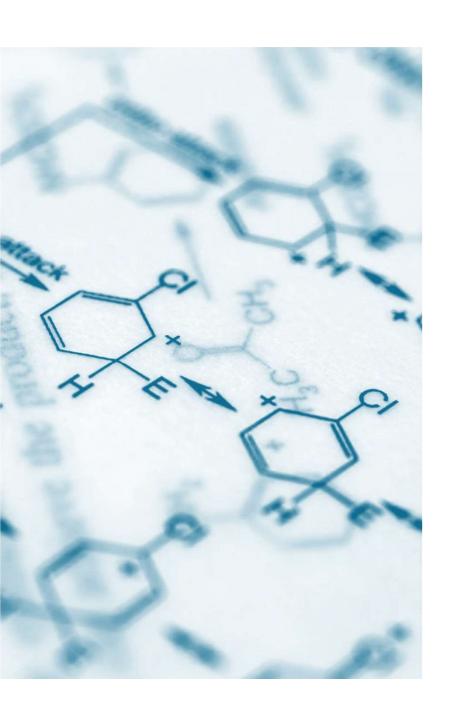
Most likely in regions with one main gas feeder.

What range of operation is possible for burners designed/optimized for one gas, when operated on a different blend.

Previous work is on low H₂ percentages. We are exploring the higher ranges

Robin Irons and Haigin Zhou




Ocean REFuel

WP4.5. OVERALL
SYSTEM OPTIMISATION

Introduction

- UK is the second-largest offshore wind market globally, with 15.9 GW grid-connected capacity (2024).
- 2030 target range: 43–50 GW offshore wind under the Clean Power 2030 plan.
- North Sea offers excellent resource, with modern projects achieving capacity factors near or above 50%.
- Strategic role: essential for decarbonising industry, transport, and power generation while enhancing energy security.

From Electrons to Molecules: Challenges and Opportunities

The intermittency challenge: Variable offshore wind generation creates periods of surplus and deficit that limit grid integration Chemical storage solution: Converting electrical energy to molecular carriers (H₂, NH₃) decouples production timing from consumption demand

Electrolytic conversion: Water splitting transforms curtailed wind electrons into storable hydrogen molecules with 70-80% efficiency

Molecular flexibility: Hydrogen enables direct storage/transport, while ammonia conversion provides enhanced density and existing infrastructure compatibility

System integration opportunity: Offshore chemical production eliminates transmission bottlenecks while creating new export 2 value streams

Multi-Scenario Analysis of Offshore Hydrogen Production Pathways

Research Objective: Comprehensive techno-economic assessment of diverse offshore hydrogen production and distribution configurations and technologies

Analytical Framework: Levelized Cost of Hydrogen/Ammonia (LCOH/LCOA) methodology

Scope: 12 distinct scenarios encompassing varied infrastructure configurations, transport mechanisms, and storage solutions

Expected Outcome: Identification of optimal pathways for industrial-scale offshore hydrogen/ammonia production with minimum economic barriers

Methodology: Mixed-Integer Optimization Programming

- **Superstructure Formulation**: Comprehensive network superstructure encompassing all potential production-transport-storage configurations
- Mathematical Approach: Mixed-integer programming for simultaneous optimization of:
 - Binary Selection Variables (Network Topology and Technology Selection)
 - Continuous Parametric Variables (Economic and Operational Parameters)
- Decision Variables:
 - Wind Turbine Foundation Types: Fixed, Floating, and Hybrid configurations
 - Electrolysis Placement: Onshore, Offshore Hub, Wind Turbine Integrated
 - Energy Carrier Conversion:
 - Direct Hydrogen Transport (Compressed/Liquefied)
 - Chemical Conversion (NH₃ via Haber-Bosch)
 - Transport Mechanisms: Pipelines (H₂), Marine Vessels (Liquefied H₂, NH₃)
- **Objective Function**: Minimization of LCOH/LCOA incorporating CAPEX, OPEX, capacity factors, and system lifetimes

Pathway Optimization Formulation:

Mixed-Integer Optimization Framework

Objective: Levelized costs of hydrogen or ammonia

Decision Variables: Technology investments, capacities, operations

Key Constraints:

Power balance: generation = consumption + export + losses

Hydrogen balance: production = demand + losses + storage

Capacity limits: electrolyser turndown ratios, storage bounds

Network connectivity: wind farms ↔ terminals ↔ demand centers

Case Study - UK North Sea System

Wind Farms: 6 sites, 9.922 GW total capacity

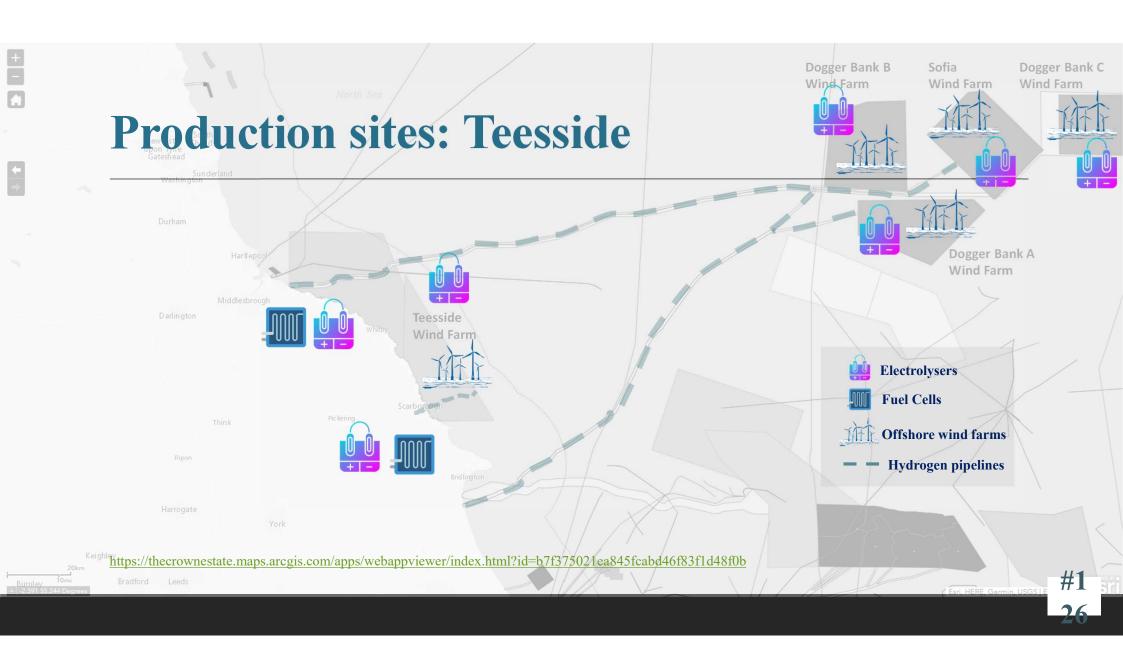
Fixed: Teesside (62 MW), Dogger Bank (3.6 GW), Sofia (1.4 GW)

Floating: NE6 (900 MW), NE7 (3.0 GW), NE8 (960 MW)

Onshore Terminals: Middlesbrough, Bridlington, St Fergus

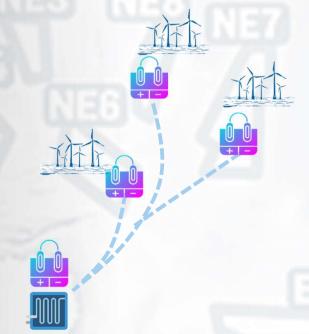
Demand Center: Milford Haven and Teesside (seaborn and/or inland transport)

Three Electrolysis Placement Strategies

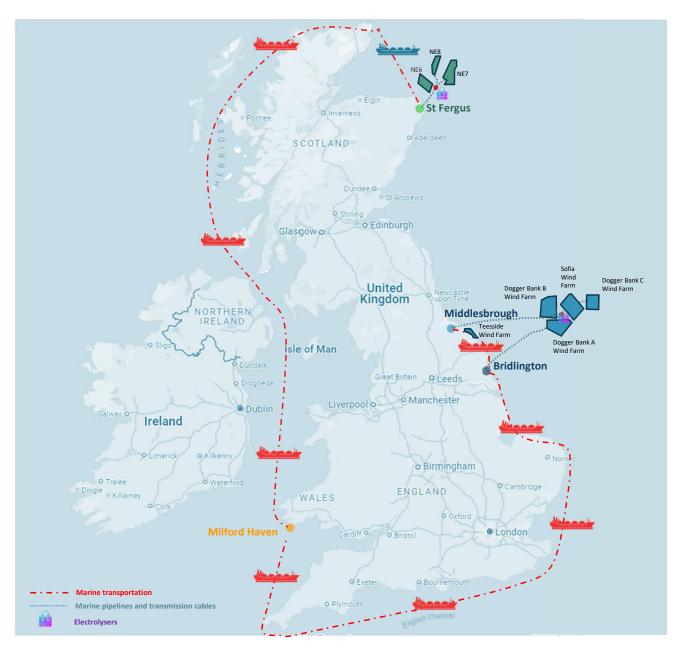

Onshore Electrolysis: Electricity transmitted via HVDC cables

Offshore Hub Electrolysis: Centralized platforms with H₂ pipelines

Turbine-Integrated Electrolysis: H₂ production within wind turbine towers


Foundation Types: Fixed-bottom vs floating wind platforms

Energy Carriers: Compressed H₂, liquefied H₂, ammonia production



Production sites: St. Fergus

Energy Network Superstructure

Example: Scen#7 H2 production

Three Fundamental Configuration Strategies

Configuration 1 - Onshore Electrolysis Hub:

Scale Advantage: Maximum economies of scale for electrolysis and ammonia conversion Transport Trade-off: High marine cable costs but leverages proven HVDC technology Optimal for: Large-scale centralized production with established grid infrastructure

Configuration 2 - Offshore Electrolysis Hub:

Balanced Approach: Moderate scale economies while reducing electrical transmission distances Infrastructure Trade-off: Offshore platform costs offset by hydrogen pipeline economics Optimal for: Systems where hydrogen transport costs favor pipelines over electrical cables

Configuration 3 - Wind Turbine Integrated:

Scale Disadvantage: Limited unit sizes reduce equipment efficiency and increase per-MW costs Transport Advantage: Eliminates electrical transformation losses and cable infrastructure Optimal for: Remote locations where transmission costs become prohibitive or grid connection is technically challenging

Energy Transmission and Transportation Modes

Electrical Energy Collection and Transmission:

- Inter-Array Cables: Collect electricity from individual wind turbines within offshore wind farms
- Export Cables (HVDC/HVAC): Transmit consolidated power from offshore collection points to onshore terminals
- Onshore Terminal Integration: Connection point for direct electrolysis facilities

Hydrogen Energy Transport:

- Offshore-to-Onshore Pipelines: Dedicated infrastructure avoiding electrical conversion losses, suitable for medium-to-long distances
- Onshore Pipeline Networks: Integration with existing or planned hydrogen backbone infrastructure for inland distribution

Energy Carrier Transportation:

- Compressed Hydrogen: Pipeline-based distribution requiring specialized materials and compression stations
- Liquefied Hydrogen: Cryogenic shipping enabling long-distance transport but with additional processing complexity
- Ammonia (Liquid State): Leverages existing global chemical shipping infrastructure with ambient pressure storage capabilities

Mode Selection Rationale: Distance economics, infrastructure maturity, end-use compatibility, and storage requirements determine optimal transport pathway for each supply chain segment.

	Offshore WT Platform	Offshore Hub	Electrolysis	Hydrogen liquefaction	NH ₃ Production	Transition to Offshore Hub	Transition to Onshore	Transition to end-user	Storage Method	LCOH/ LCOA(£/kg)
Scenario#1	Fixed/ Floating	No	Onshore	No	No	NA	Cable	In-land H₂ Pipeline	Compressed H ₂ /MH	12.026
Scenario#2	Fixed	Yes	Offshore Hub	No	No	Cable	H₂ Pipeline	In-land H₂ Pipeline	Compressed H ₂ /MH	8.652
Scenario#3	Fixed	Yes	Offshore Hub	Yes	No	Cable	H ₂ Pipeline	Ship	Liquefied H ₂	7.702
Scenario#4	Floating	Yes	Offshore Hub	No	No	Cable	H ₂ Pipeline	In-land H₂ Pipeline	Compressed H ₂ /MH	11.971
Scenario#5	Floating	Yes	Offshore Hub	Yes	No	Cable	H ₂ Pipeline	Ship	Liquefied H₂	11.291
Scenario#6	Fixed/ Floating	Yes	Offshore Hub	No	No	Cable	H₂Pipeline	In-land H₂ Pipeline	Compressed H ₂ /MH	9.449
Scenario#7	Fixed/ Floating	Yes	Offshore Hub	Yes	No	Cable	H₂ Pipeline	Ship	Liquefied H ₂	9.246
Scenario#8	Fixed/ Floating	Yes	Offshore Hub	No	Haber– Bosch (onshore)	Cable	H ₂ Pipeline	Ship	NH₃ in Liquid state	1.187
Scenario#9	Fixed/ Floating	Yes	Onshore	No	Haber– Bosch (onshore)	Cable	H ₂ Pipeline	Ship	NH₃ in Liquid state	1.372
Scenario#10	Fixed/ Floating	Yes	WT integrated	No	No	H ₂ Pipeline	H₂ Pipeline	In-land H₂ Pipeline	Compressed H ₂ /MH	9.024
Scenario#11	Fixed/ Floating	Yes	WT integrated	Yes	No	H ₂ Pipeline	Ship	Ship	Liquefied H ₂	8.820
Scenario#12	Fixed/ Floating	Yes	WT integrated	No	Haber– Bosch (offshore)	NA	H₂ Pipeline	Ship	NH3 in Liquid state	1.312

Scenario Classification Framework

Key Research Findings:

NH₃ pathways demonstrate minor energy-equivalent advantage:

 H_2 optimal (Scenario #3): £7.702/kg for LHV of 120 MJ/kg = £0.0641/MJ

NH₃ optimal (Scenario #8): £1.187/kg for LHV of 18.6 MJ/kg = £0.0638/MJ

NH₃ strategic advantages beyond cost:

Storage Operating Condition: Liquid at 8 bar vs. 350-700 bar for H₂, or -253°C for LH₂

Transport infrastructure: Existing global shipping network (8M tonnes/year)

Industrial integration: Direct feedstock for fertilizers, chemicals, steel production

Offshore hubs emerge as optimal configuration: Balance of cost, scale, technical feasibility across both H₂ and NH₃ pathways

Floating wind integration feasible: 30% capacity factor premium justifies 15-25% CAPEX premium at scale

System integration critical: Progressive integration yields 15-25% cost improvements from distributed to centralized configurations

Cross Cutting Themes

Economic Modelling

Public Perception of technologies

LCA and System Metrics

"Next generation Renewable Ocean Energy"

Cross-cutting themes Policy/Economic Modelling & Public Perceptions

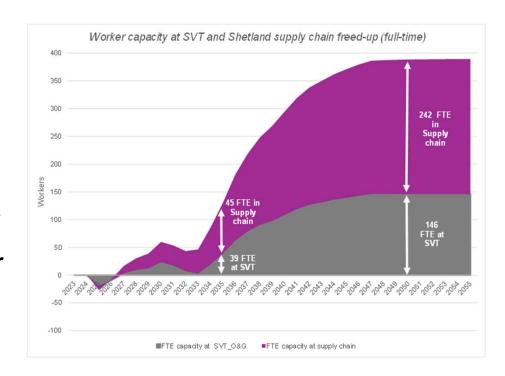
2024-2026: A focus on Shetland

- Exploring how potential harnessing Shetland's extensive wind power and marine energy resources may impact the prosperity and sustainability of the local economy and affect the lives and livelihoods of its residents.
- Focus on the transition of the Sullom Voe Terminal from oil and gas processing to the production of low carbon fuels including green hydrogen, with the support of Veri Energy, starting with focus on the counterfactual of 'do nothing' and capacity being freed up.
- Also, investments Shetland supply chain capacity to service offshore wind developments at NE1
 Scotwind sites starting with collaboration with Lerwick Port Authority to investigate how a £34
 million investment in deep water port at Dales Voe is likely to impact Shetland GDP,
 employment, income generation and prices.
- In partnership with Shetland Islands Council (SIC), via additional ESRC Impact Acceleration funding, we have developed a **Shetland Economy Model User Tool** to enable decision makers to draw on full bank of economy-wide scenario simulation results from the regional computable general equilibrium (CGE) model we have begun developing via Ocean REFuel.
- The Policy/Economic Modelling and Public Perceptions team are collaborating to investigate how understanding of economy-wide impacts may impact public attitudes to green energy developments

The transition away from oil and gas at SVT

- Investigating how the energy transition may affect critical Shetland infrastructure, local supply chains, service changing local demand, all in terms of realising benefits and community wealth creation
- Key focus on the <u>transition of the Sullom Voe Terminal</u> (<u>SVT</u>), from a facility providing oil & gas services to one where low carbon fuels could be produced. Key challenge: timing of what is declining and what is emerging in terms of retaining skills and high value activity in the (highly constrained) local economy
- Going forward we will explore how the transition of the SVT can lead to a broader transformation of the Shetland economy from one that imports fuels to meet its energy needs, to one where it consumes locally produced energy goods.
- Initial focus what is declining/capacity being freed up

How much worker capacity will be freed up at Sullom Voe Terminal (SVT) and the Shetland supply chain by the decline in servicing oil and gas activity?

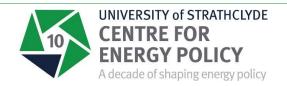

The decline in oil and gas activity at SVT could free up skilled labour capacity. Future plans involve producing low carbon fuels, including green hydrogen, transporting and storing captured carbon (from elsewhere in the UK and overseas)

Key Finding 1

- The planned closure of East of Shetland oil field (by 2035), and the continued decline of West of Shetland could free up +140 skilled workers at SVT and around 240 workers across the Shetland supply chain.
- Freed-up workers could be absorbed by low-carbon fuel production and storing carbon emissions services.

Key Finding 2

- The pace of freed-up capacity varies over time; slower in earlier stages and accelerated beyond 2035.
- Veri Energy and Statkraft developments can create demand for the freed-up labour capacity.
- The question is whether the near-term freed-up capacity will be sufficient to support these developments. Or if the new developments will exacerbate existing challenges in the Shetland labour market?

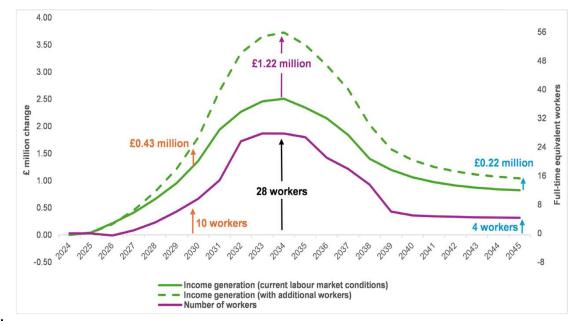


New port and harbour activity to support the transition

- Another key focus is the development of an Ultra-Deep-Water Quay at Dales Voe to support the decommissioning of oil and gas infrastructure and the deployment and operation of offshore wind.
- We are running scenario simulation analyses using our Shetland Economy Model (SEM) around how different scales of either/both activities can be supported by the planned investment at Dales Voe and by local supply chain responses.
- Across all our analyses, we investigate the potential displacement of other activities and workers and explore how these could be mitigated by changing the conditions in the local labour market.
- We continually strive to make our analyses as useful as possible for a wide range of stakeholders. To that end, our Shetland work serves as the basis for developing an accessible reporting tool for our modelling work.

How will the creation of the new Dales Voe Ultra-Deep-Water Quay impact the Shetland economy?

Key Finding 1


- Despite the worker and skills challenges in Shetland's labour market, the Dales Voe facility will boost income generation in Shetland (measured as regional GDP, GRDP). Even without any additional workers attracted to Shetland:
 - Peak GRDP gains of £2.4 million in 2034, and a sustain long-term boost of £0.8 million is possible.

Key Finding 2

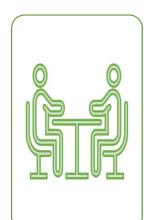
- Operating the new facility will require only 2-3 additional workers. However, increased supply chain activity within Shetland will require sourcing workers from other sectors.
- This is likely to create competition for labour between sectors, driving up wages and the (already high) cost of living and doing business in Shetland.

Key Finding 3

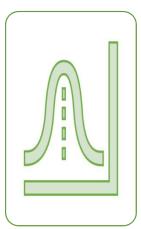
- If sufficient additional workers can be attracted to fill vacant supply chain jobs at different points in time, Shetland's income boost will increase (on average 27%).
 With additional workers:
 - GRDP peaks at £3.7 million in 2034.
 - Long-term GRDP gains of £1 million per year,
 with almost no upward pressure on wages and prices.

Next steps with the Shetland Economy Model (SEM)

- Continue with scenario simulation work and stakeholder engagement both on the scenarios we're looking at so far and building out to others; supporting interaction with the SEM User Tool.
- Including initial results for nascent hydrogen production activity, both Statkraft new development at Scatsta and Veri plans to transition activity at the Sullom Voe Terminal. Activity here will include but not be limited to green hydrogen production, which is likely to at least initially involve onshore wind turbines on site, rather than linking to Shetland's evolving electricity grid or offshore wind.
- We need to expedite our investigation of evolution of Shetland's electricity sector, in economic terms linked to technology and interconnection developments.


Continuing to answer 3 broad research questions:

- 1. How similar or different will the islands' economic picture come to look compared to what it is now, with extensive midstream oil activity on Shetland WHAT, WHY and WHEN?
- 2. What generic lessons emerge for other regional cases (Shetland as a microcosm)?
- 3. How will the emerging economic picture affect PUBLIC ATTITUDES?



Deliberative Workshops

- Qualitative
- N = 60
- Shetland Islands
- April 2025 & 2026
- Exploring Diverse perspectives

Public Perceptions

Survey

- Quantitative
- N ~ 1500
- Nationwide
- September/October 2025
- Measuring prevalence
- Testing Associations
- Generalizable conclusions

Deliberative Workshop

Islesburgh Complex, Lerwick, Shetland

Session 1: Hydrogen & Ammonia: First Impressions

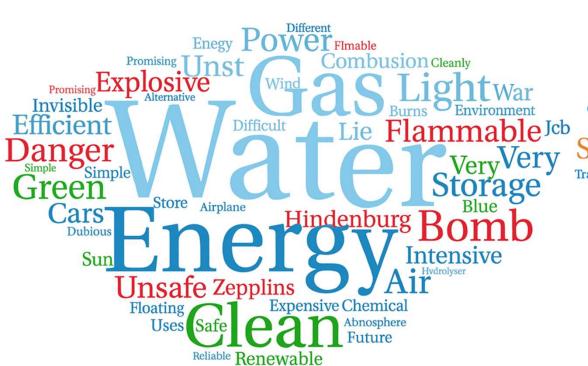
Session 2: Hydrogen & Ammonia – Feelings, Benefits, Concerns, Information

Session 3: Hydrogen & Ammonia Applications

Session 4: Envisioning Shetland's Future: What matters most

Session 5: Energy Projects in Shetland (Onshore vs Offshore)

Session 6: Community Benefits – Priorities & Concerns


New Session: Economic Impacts / Benefits of Energy Development

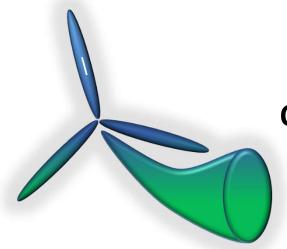
Hydrogen

Ammonia

Broad Takeaways

- Participation marked by motivation, curiosity, caution, and occasional confusion
- Preference for 'green' hydrogen production, though with important caveats
- Stronger acceptance of applications in heavy transport and industry
- Key concerns: environmental impacts and scale of development
- Mistrust linked to information gaps and limited transparency
- Perceptions of lost control shaped by experiences with past projects
- Scepticism over local benefits vs. fears of becoming an 'energy dumping ground'
- Community acceptance influenced by:
 - Honest, accessible information from trusted local sources
 - Early, meaningful community engagement
 - Fair and just benefit sharing
 - Careful management of scale
 - Sensitivity to location and visibility

Survey



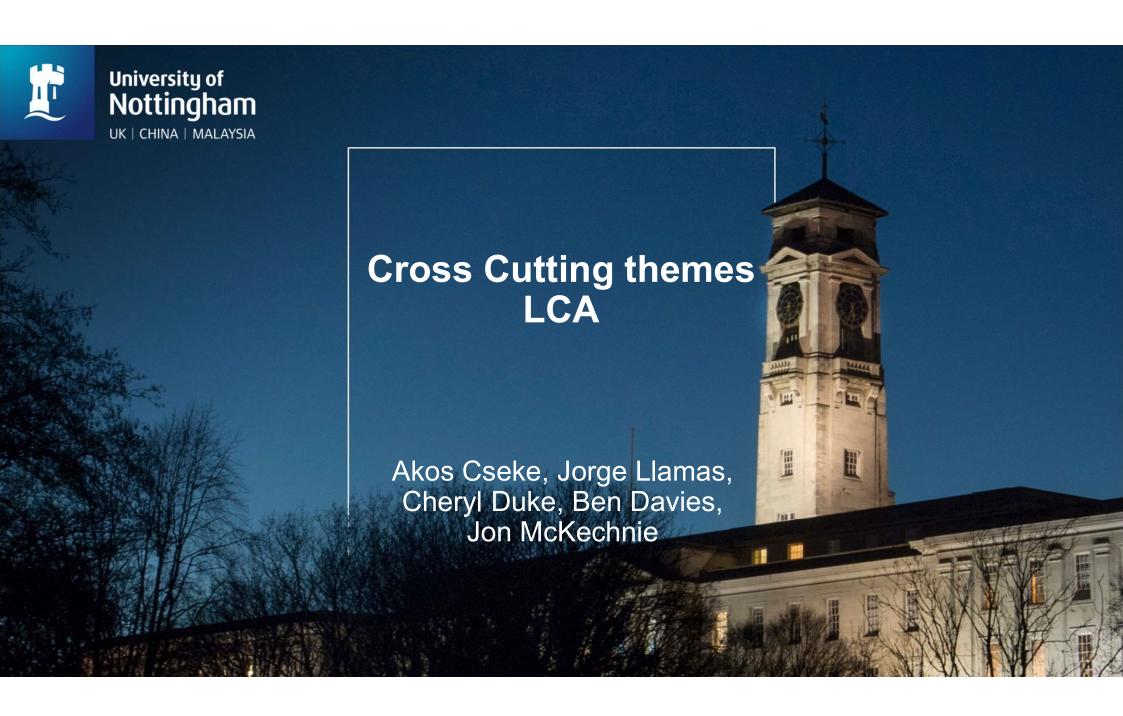
- Demographics
- Factors associated with social acceptance and policy support for both Hydrogen and Ammonia
 - Environmental values and climate change concerns
 - Energy concerns
 - Technology Optimism
 - Subjective perceptions of knowledge
 - Information seeking (interest, sources, trust)
 - Misinformation and conspiracy mentality scale
 - Place attachment
 - Trust and fairness perceptions
 - Affect
 - Risk/Benefit Perceptions
 - Safety concerns
- Conjoint Experiments
 - Project preferences
 - Community benefit agreements
 - Energy policy orientation

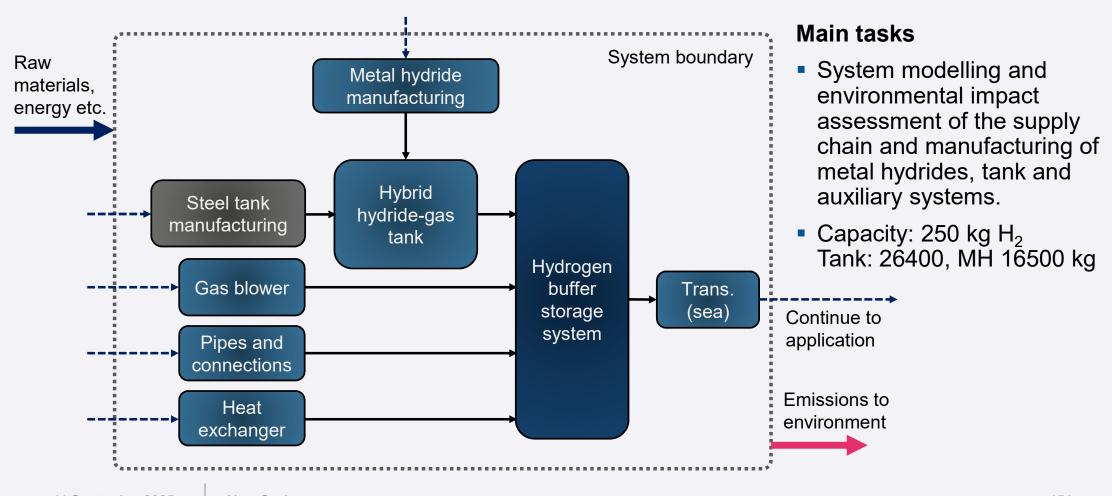
Ocean-REFuel (Ocean Renewable Energy Fuel)

"Next generation Renewable Ocean Energy"

Thank you!

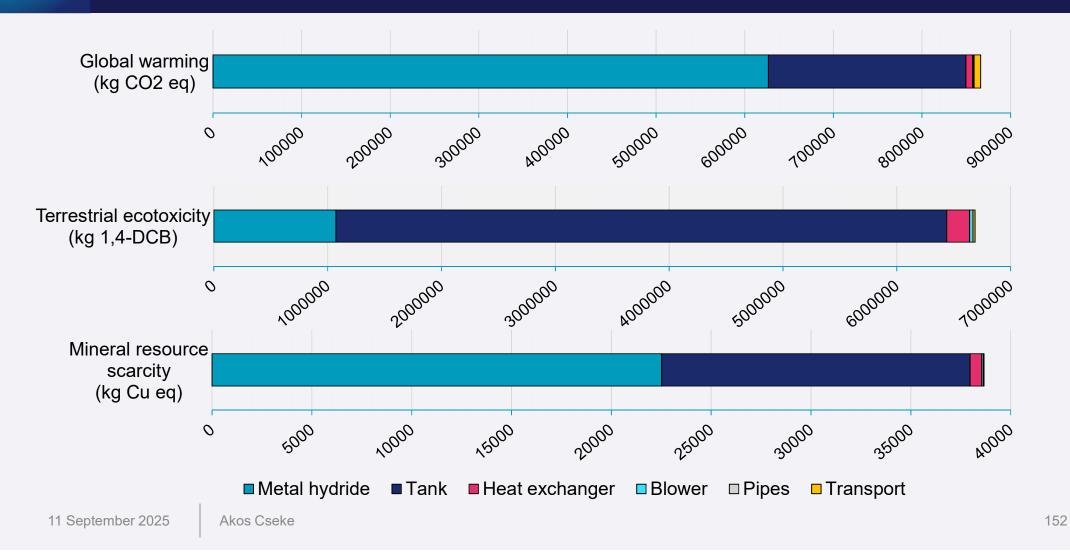
Contact us at <u>karen.turner@strath.ac.uk</u> and <u>muas21@bath.ac.uk</u>





Life Cycle Assessment: Metal Hydrides and Offshore Hydrogen Storage Tanks

Akos Cseke


LCA: Hydrogen buffer storage system

11 September 2025 Akos Cseke

LCA: Impact assessment

LCA: Next steps

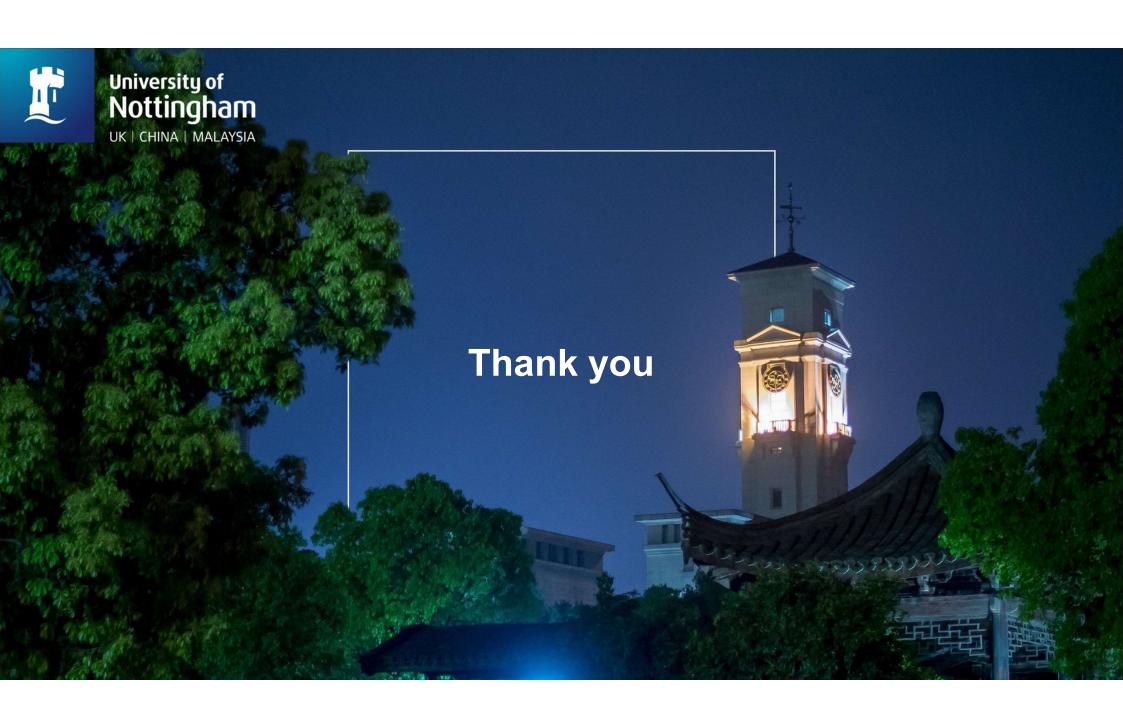
- System modelling and impact assessment of different metal hydride alloys.
- Investigation of the relative performance of the metal hydride alloys and relative importance of the tank and ancillary equipment.
- Review and screening of metals for metal hydride alloys: combination LCA with other factors, such as cost and criticality. Creation of a scoring system to indicate relative impacts and risks of various metals.
- Integration of sustainability and technical parameters: bringing together capacity, degradation, lifetime, heat balance, etc. into sustainability analysis to evaluate and compare the most promising options.

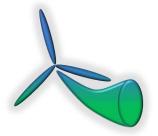
11 September 2025 Akos Cseke 153

Ocean ReFuel Updates

Ben

 Has been integrating the wind turbine and electrolyser material flows from Jorge and Cheryl, with the hydrogen production network modelling completed by Mahdi from Imperial. The goal is to supplement the network model output (optimised for cost of production) with LCA results.

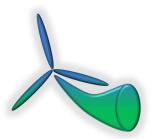

Jorge


 Finalising paper draft on future UK offshore wind material requirements with aim to submit for review in Autumn.

Cheryl

 Paper on material requirements and supply risks for future PEM deployment has been resubmitted following positive reviewer comments and we hope to have it published in very near future.

11 September 2025 Akos Cseke



Questions and discussion

Ocean Refuel funded by EP/W005204/1

